

CS-523 Advanced topics on Privacy Enhancing Technologies

Privacy-preserving data publishing (Part II)

Theresa Stadler
SPRING Lab
theresa.stadler@epfl.ch

Introduction

Differential privacy

Course aim: learn **toolbox for privacy engineering**

- tool*
to publish aggregates
with formal privacy
guarantees

mechanism
to evaluate privacy

Application Layer

Network Layer

Goals

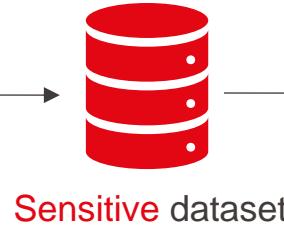
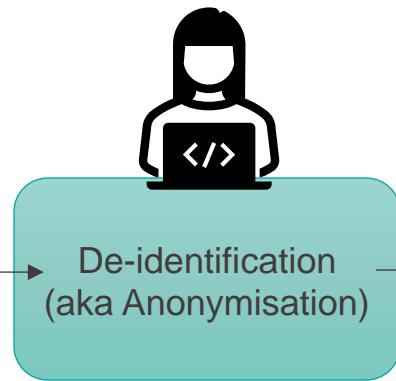
What should you learn today?

- Basic understanding of **differential privacy** and **its key properties**
 - Composition
 - Post-processing
- Understand **the meaning of ϵ** and how to use it to measure privacy loss
- Understand basic methods to **achieve differential privacy**
- Understand **practical issues** when using differential privacy
-

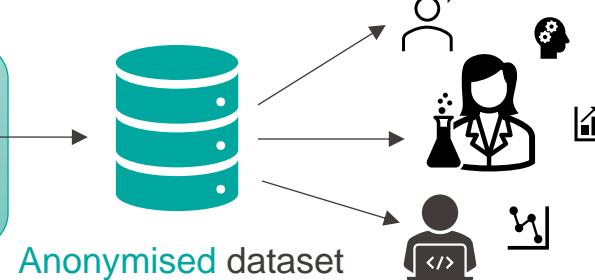
Privacy-preserving microdata sharing

Recap

Sensitive data about people



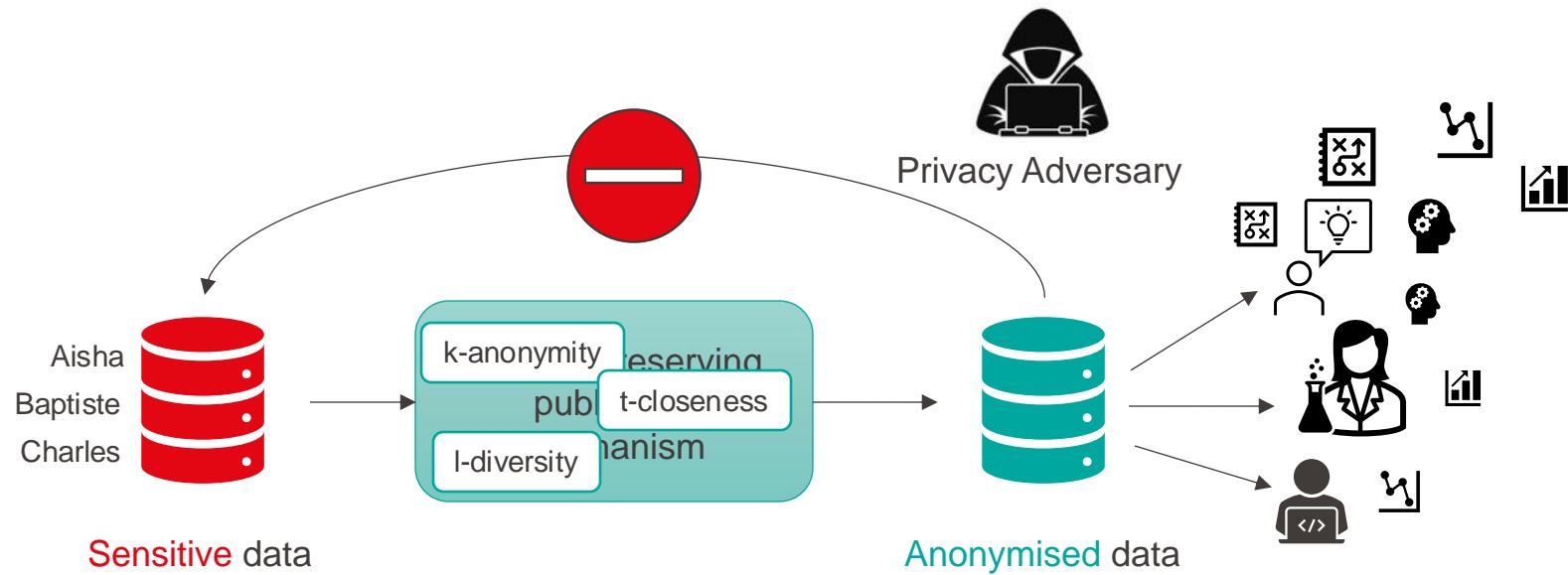
Research, business insights, innovation,...



Mask or Remove Personally Identifiable Information (PII):
name, SSN, phone number, address, email, twitter handle,...

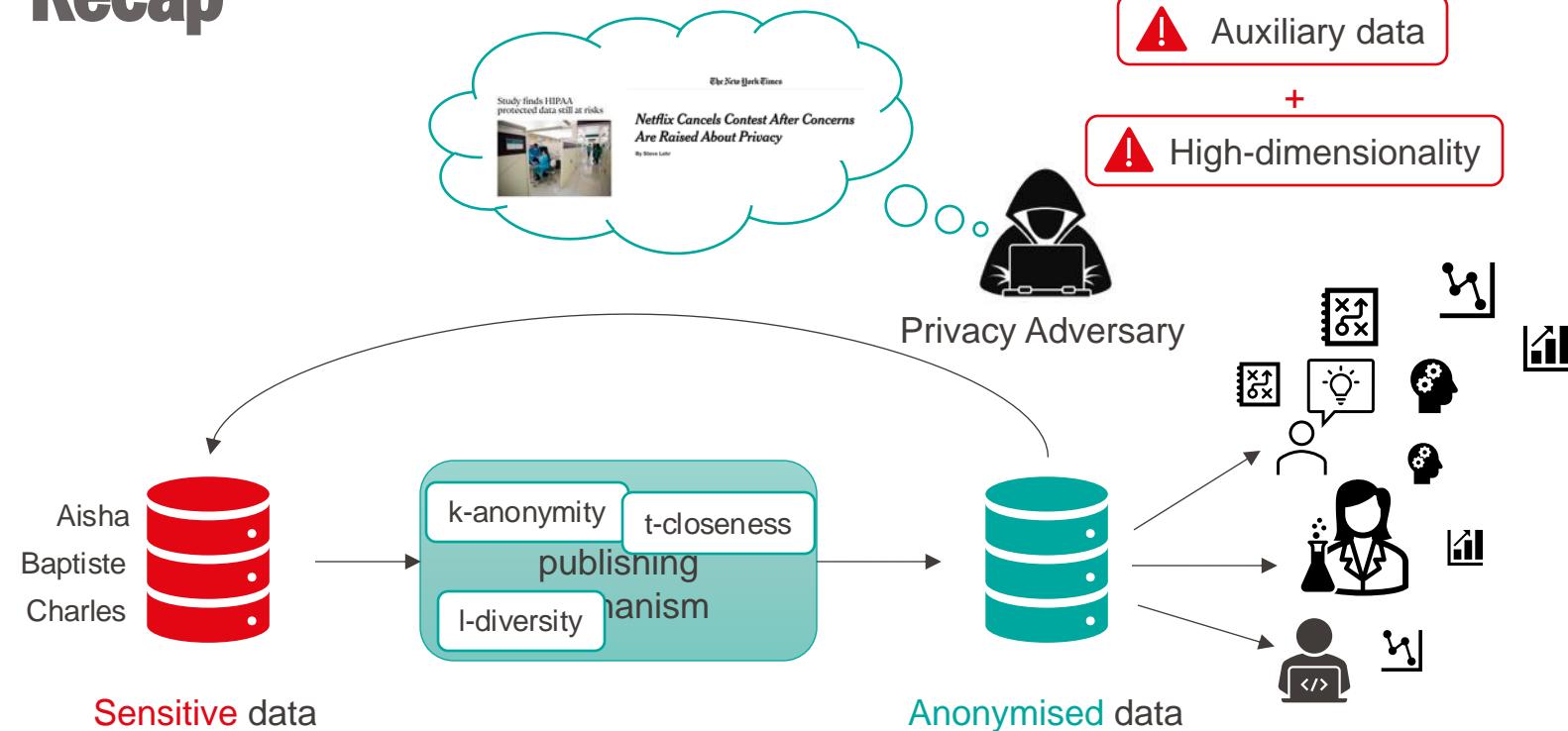
Privacy-preserving microdata sharing

Recap



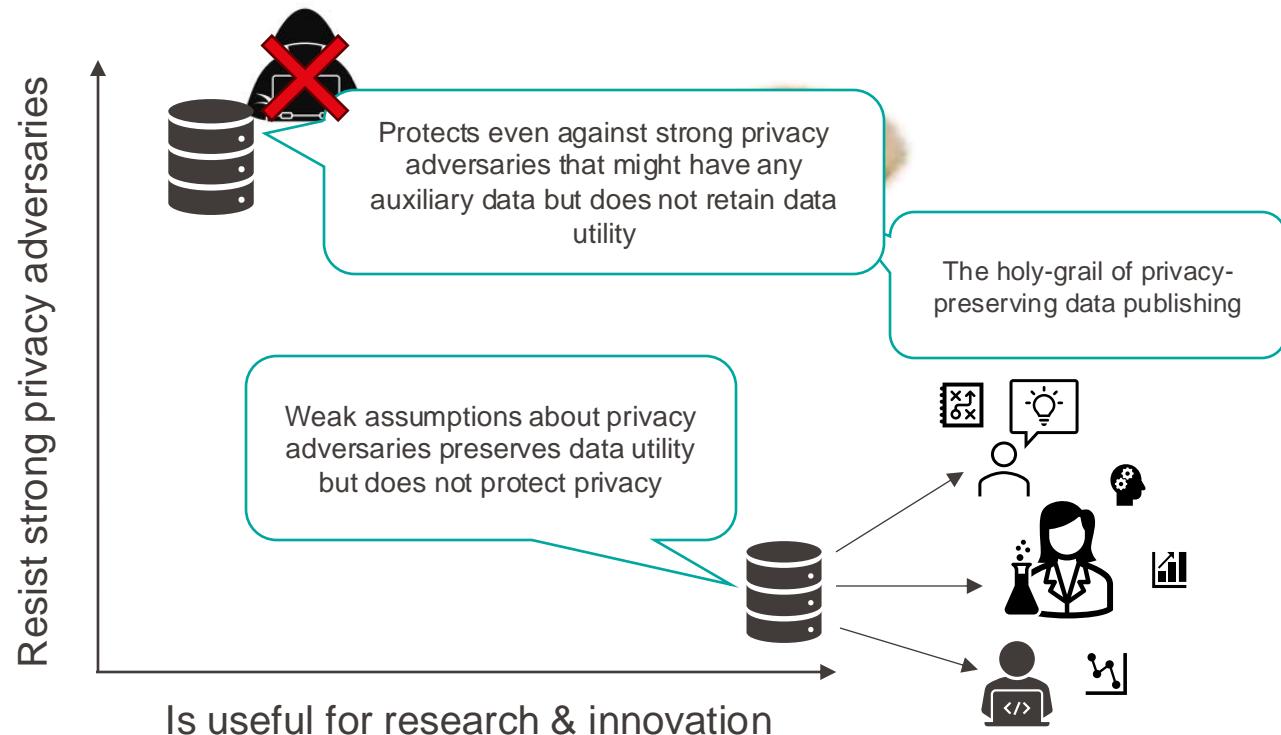
Privacy-preserving microdata sharing

Recap



The privacy-utility trade-off

Recap



The privacy-utility trade-off

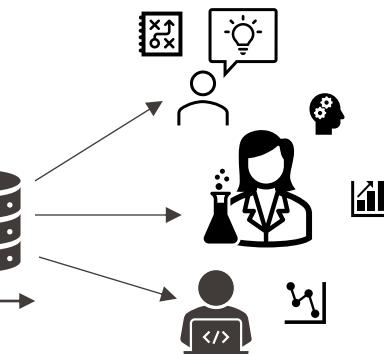
Recap

Resist strong privacy adversaries

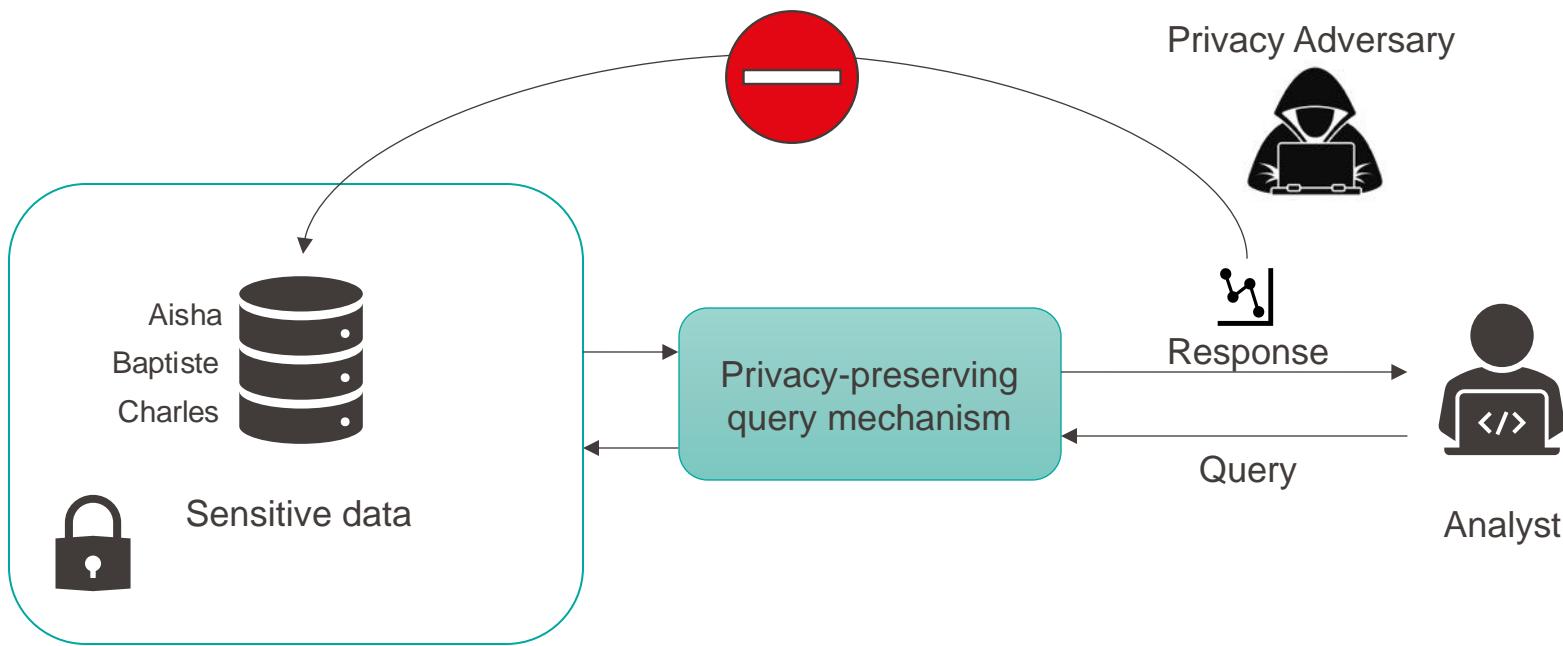
Is useful for research & innovation

Privacy
data

The holy-grail of privacy-preserving data publishing



Change of paradigm: Query access



Aggregate Data Publishing

Differencing Attacks

Have we solved the privacy problem if we just **switch to query access**?

A database table with a lock icon on the left. The table has columns: Name, Commune, and COVID+. The data is as follows:

Name	Commune	COVID+
Alice	1025	Yes
Baptiste	1026	Yes
Charles	1028	No
David	1023	No
Eric	1025	No
Francois	1015	Yes
Geraldine	1028	No

Privacy-preserving
query mechanism

Response Q2: 2

Response Q1: 3

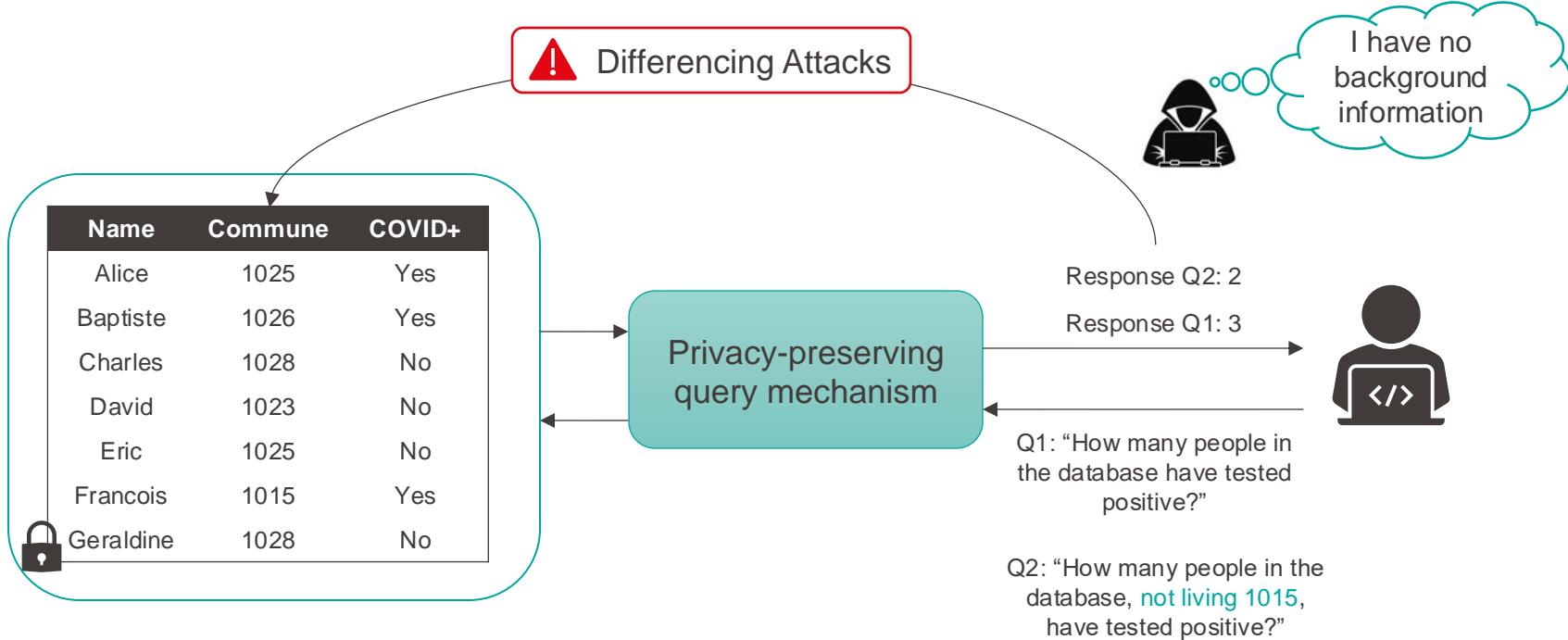
Q1: "How many people in
the database have tested
positive?"

Q2: "How many people in the
database, **not living 1015**,
have tested positive?"

Aggregate Data Publishing

Differencing Attacks

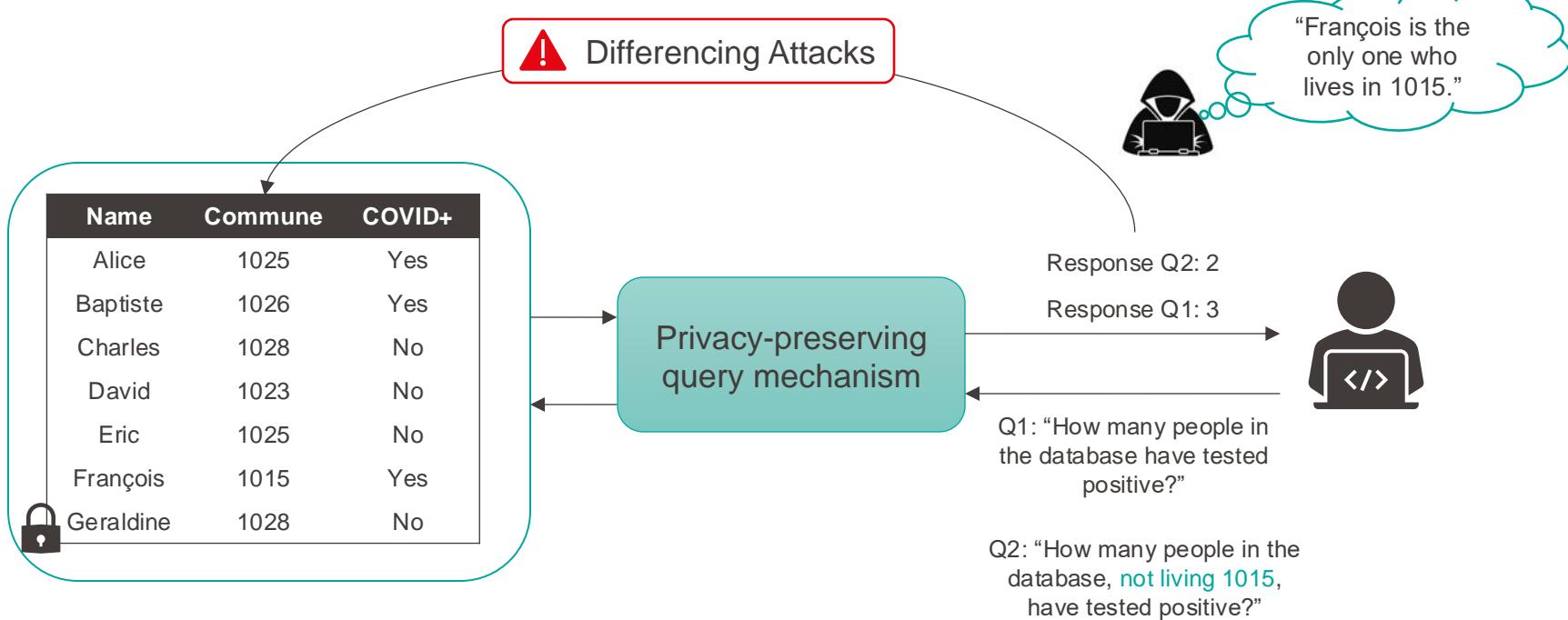
Have we solved the privacy problem if we just switch to query access?



Aggregate Data Publishing

Differencing Attacks

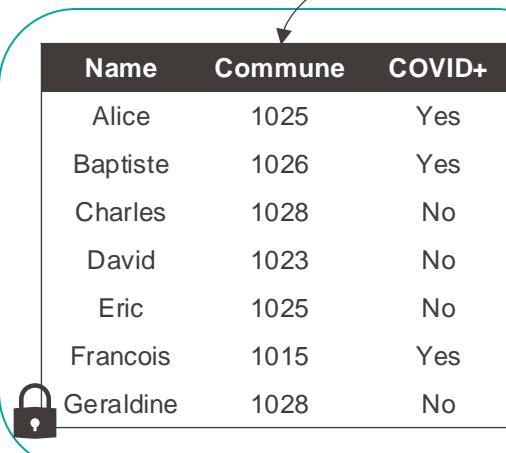
Have we solved the privacy problem if we just switch to query access?



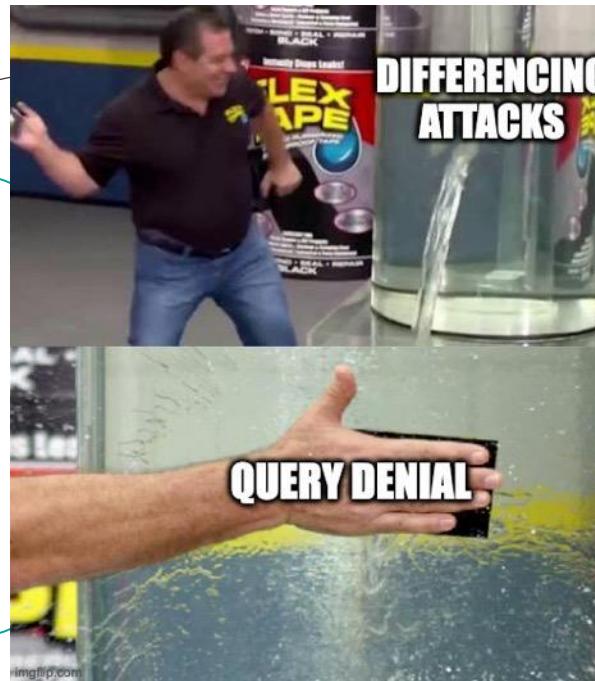
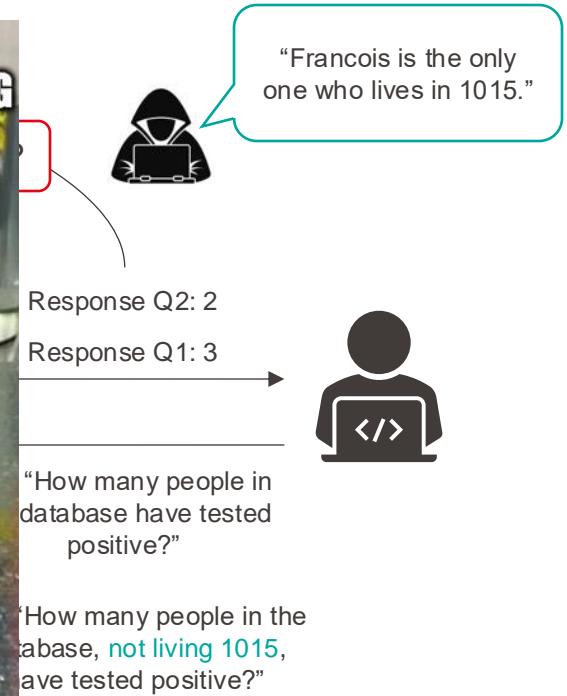
Aggregate Data Publishing

Differencing Attacks

Have we solved the privacy problem if we just switch to query access?



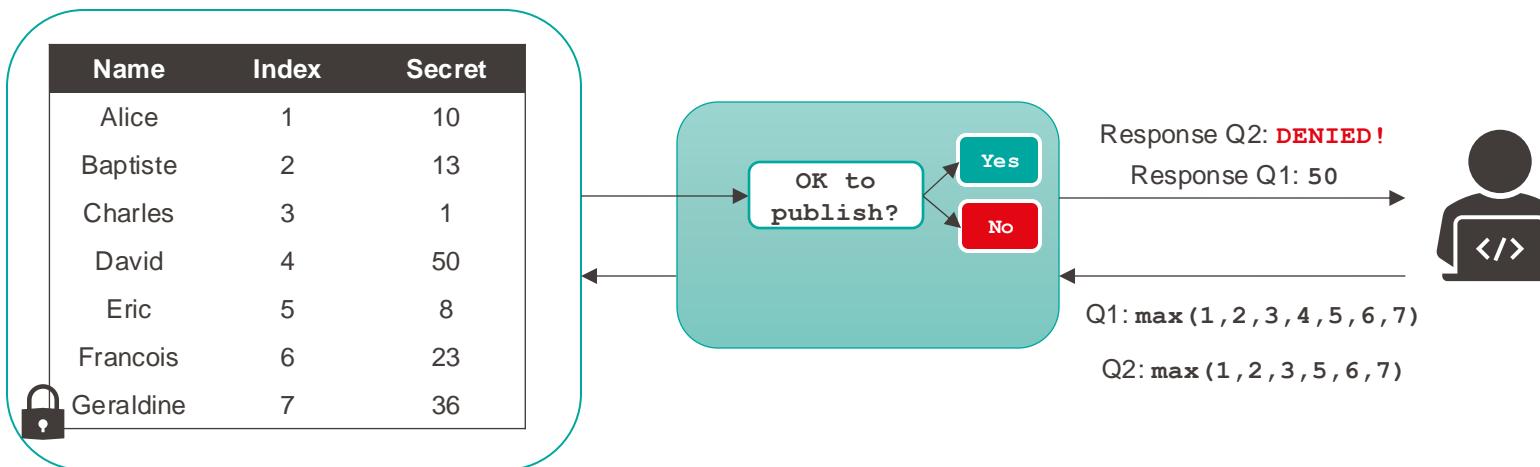
Name	Commune	COVID+
Alice	1025	Yes
Baptiste	1026	Yes
Charles	1028	No
David	1023	No
Eric	1025	No
Francois	1015	Yes
Geraldine	1028	No



Aggregate Data Publishing

Query Auditing

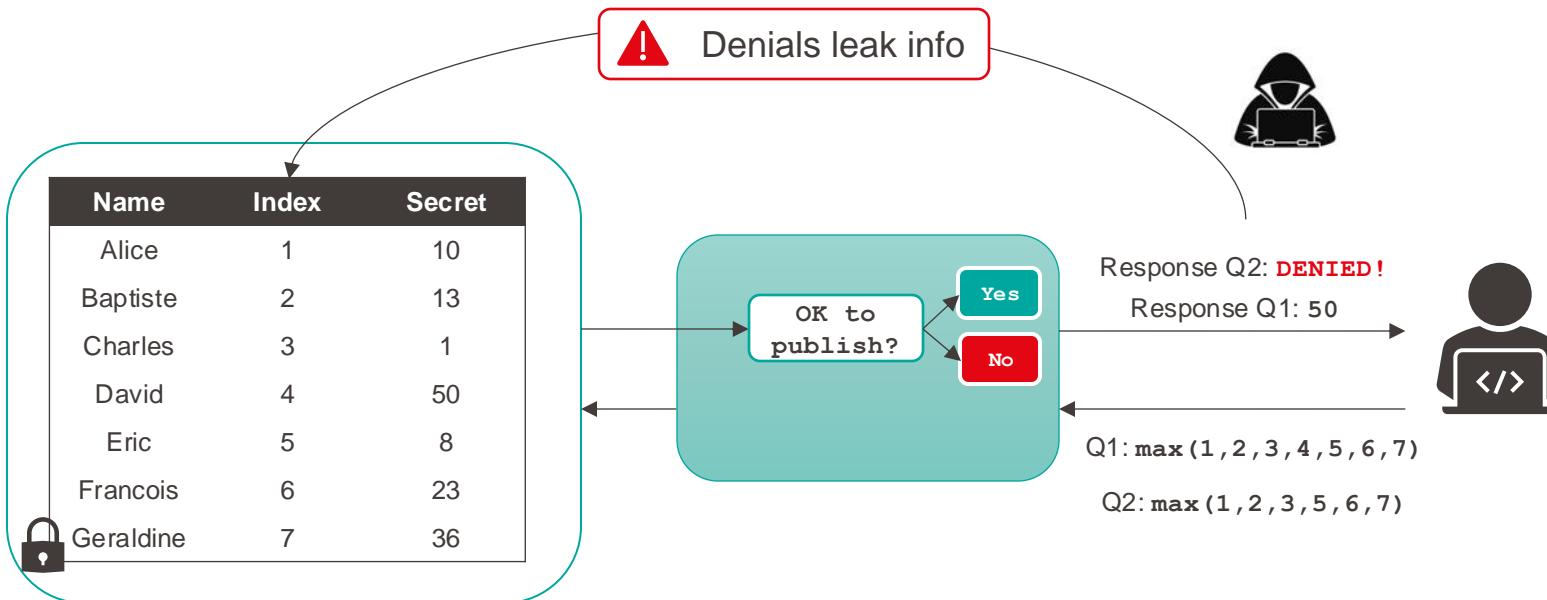
Have we solved the privacy problem if we just switch to query access with query auditing?



Aggregate Data Publishing

Query Auditing

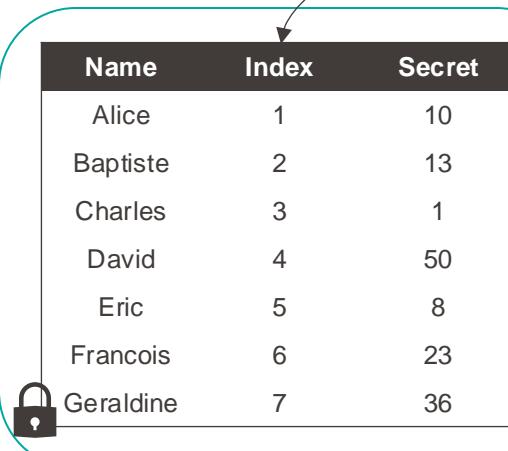
Have we solved the privacy problem if we just switch to query access with query auditing?



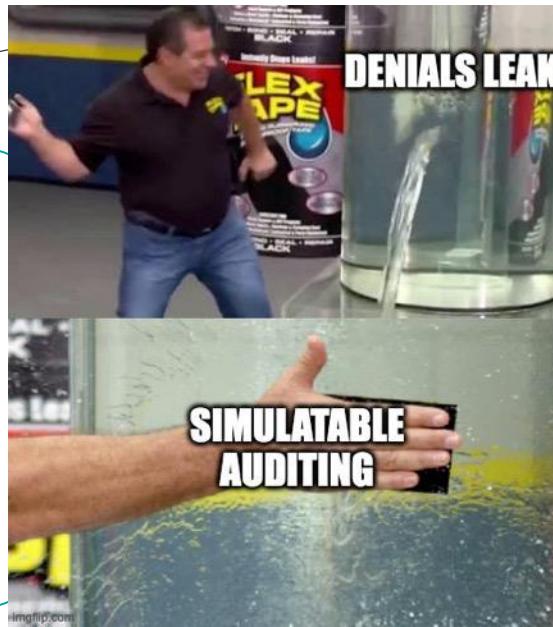
Aggregate Data Publishing

Query Auditing

Have we solved the privacy problem if we just switch to query access with query auditing?



Name	Index	Secret
Alice	1	10
Baptiste	2	13
Charles	3	1
David	4	50
Eric	5	8
Francois	6	23
Geraldine	7	36



on?

Response Q2: DENIED!

Response Q1: 50

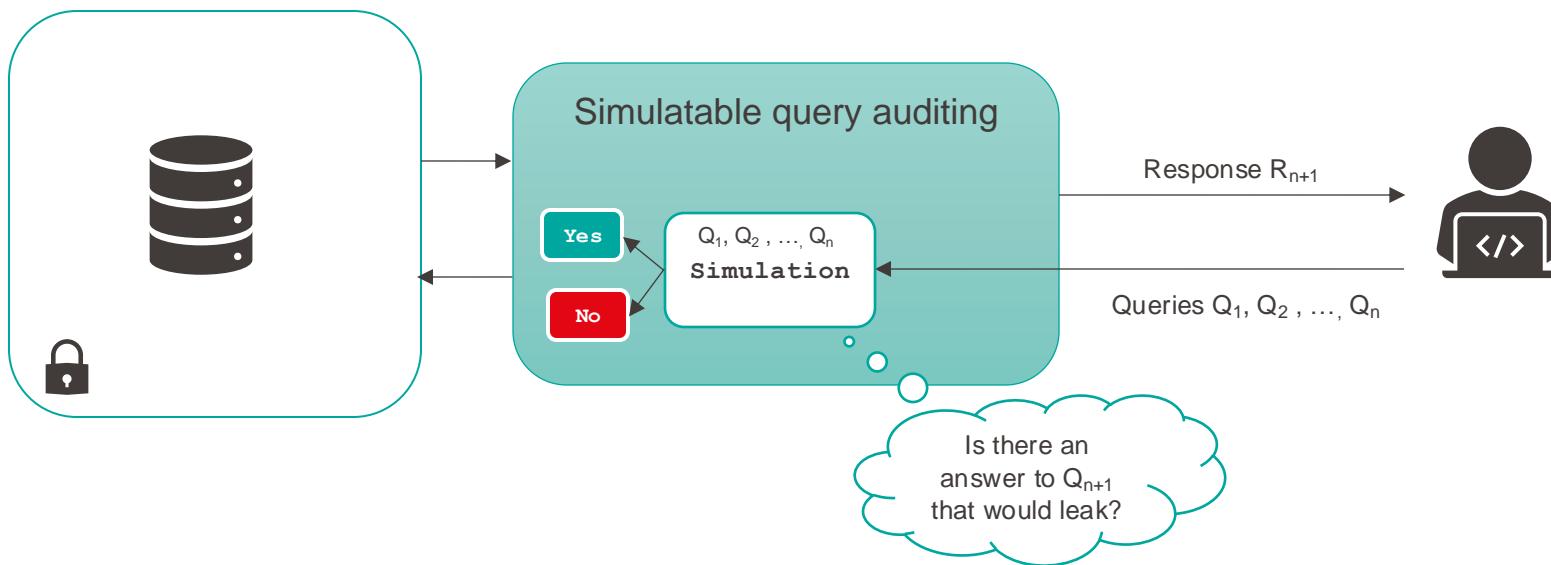
Q1: `max(1, 2, 3, 4, 5, 6, 7)`

Q2: `max(1, 2, 3, 5, 6, 7)`

Aggregate Data Publishing

Query Auditing

Have we solved the privacy problem if we just switch to query access with simulatable query auditing?

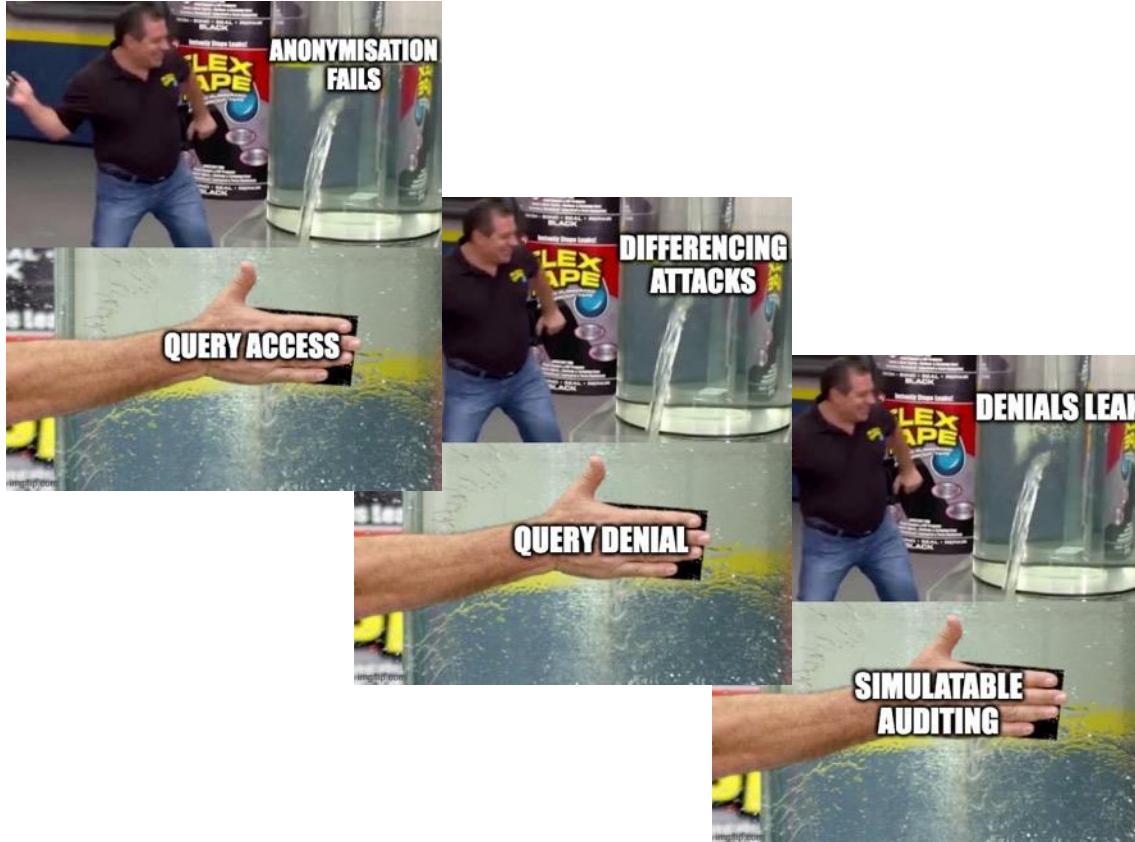


Aggregate Data Publishing

Query Auditing

- Audits are limited to a fixed privacy definition
 - Individual (record) vs. group (record) privacy
 - Rely on heuristics
- Algorithmic limitations
 - Secure deniability implies using algorithms computationally prohibitive
 - Feasible methods focused on simple queries
- Utility loss not quantifiable
 - Literature uses percentage of denials but this may not be representative
 - No good way to quantify the privacy-utility trade-off

Aggregate Data Publishing



How do we avoid this?

...

Aggregate Data Publishing

Motivation

Differential Privacy

Motivation

Previous Techniques

Differential Privacy

Heuristic privacy definition
fixed to one adversary

Formal privacy guarantee

Repeated failures

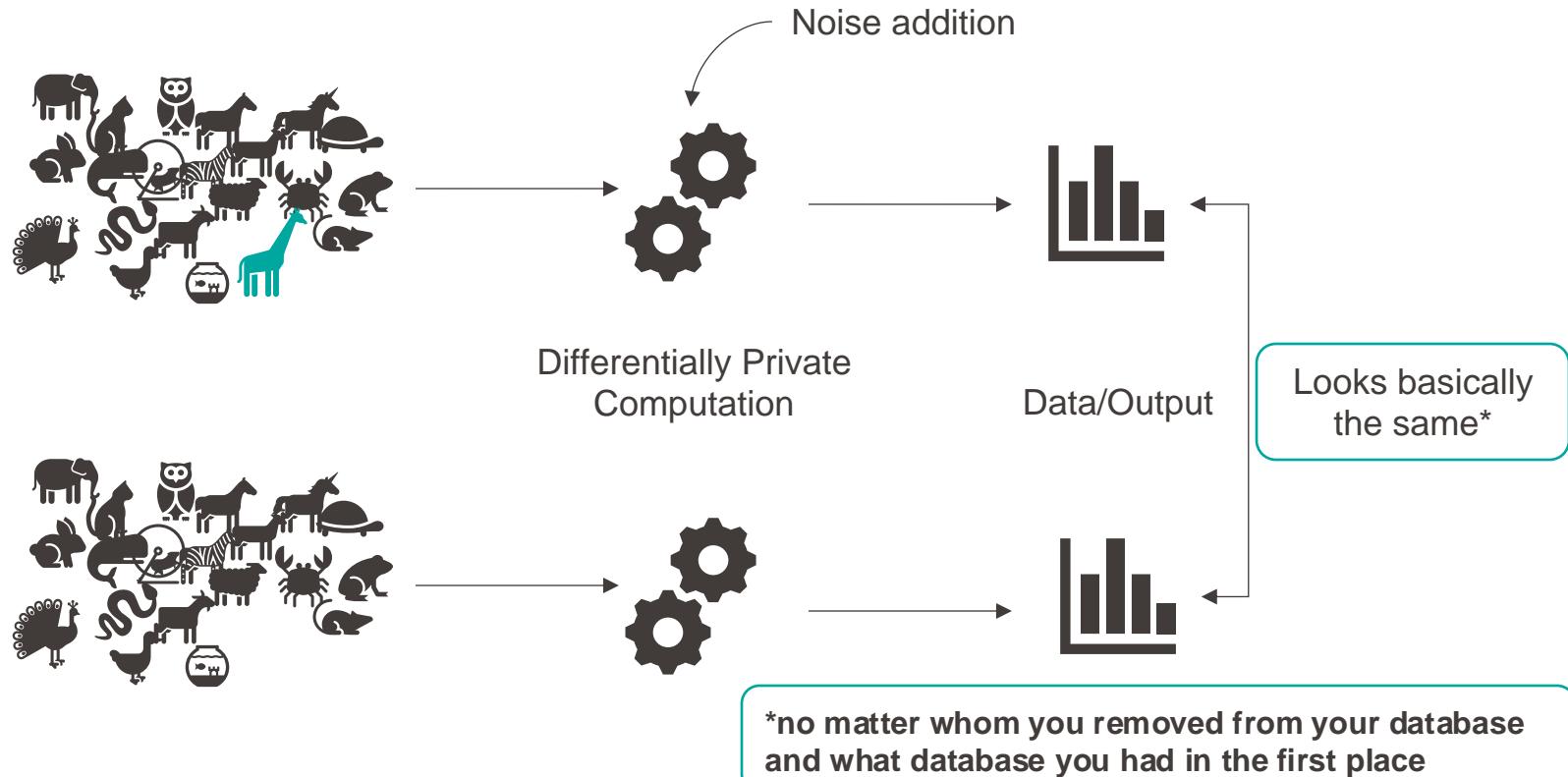
Set the right social incentives

Utility loss not quantifiable

Quantify inherent trade-offs

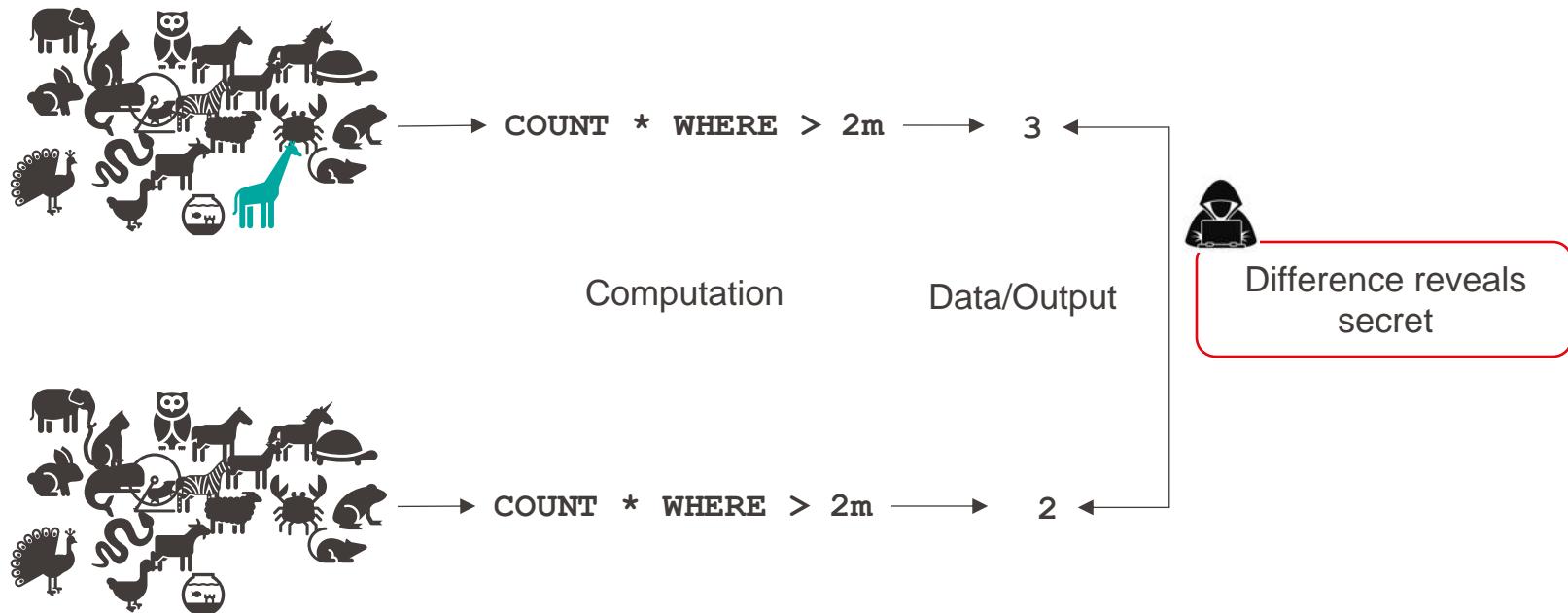
Differential Privacy

Motivation



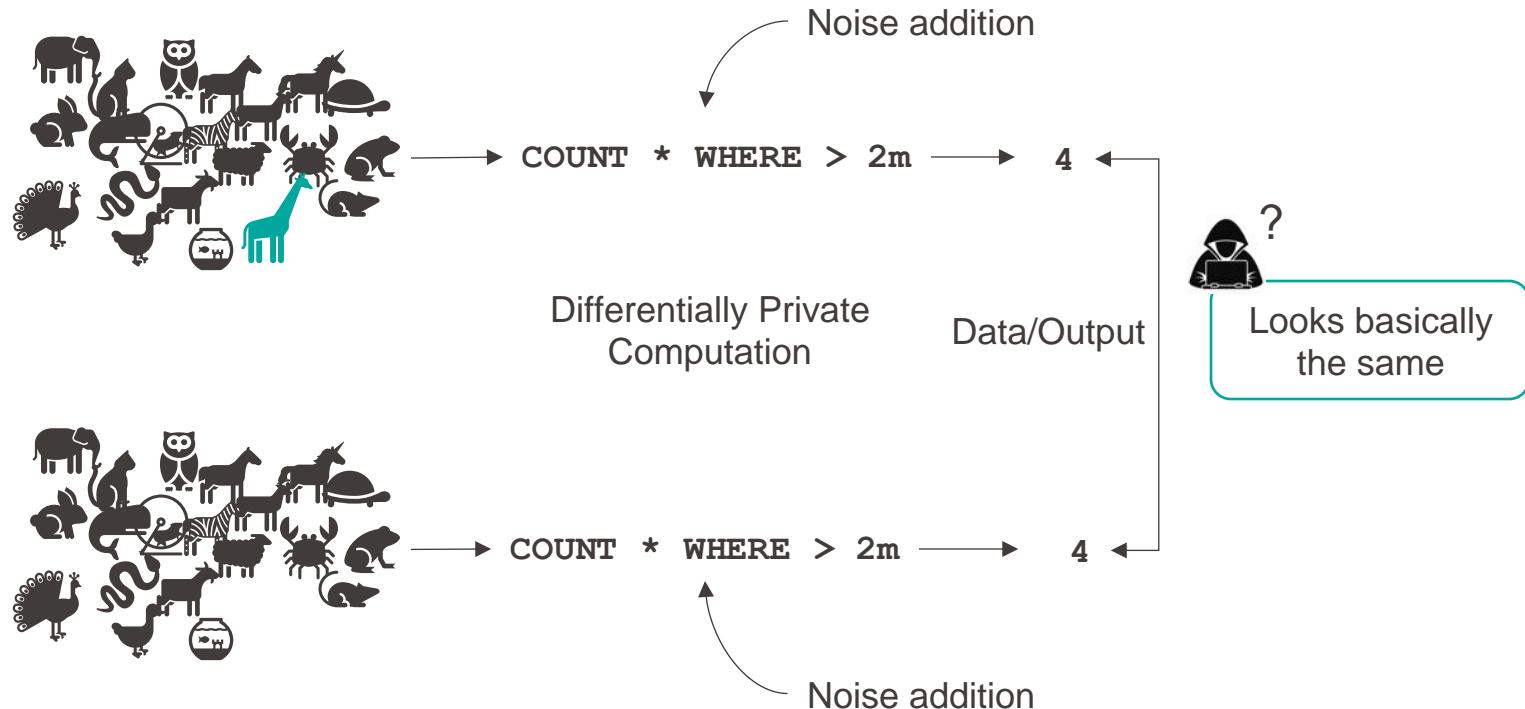
Differential Privacy

Motivation



Differential Privacy

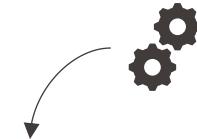
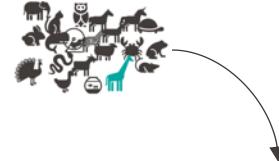
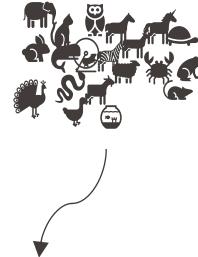
Motivation



Understanding Differential Privacy

Differential Privacy

Formal Definition



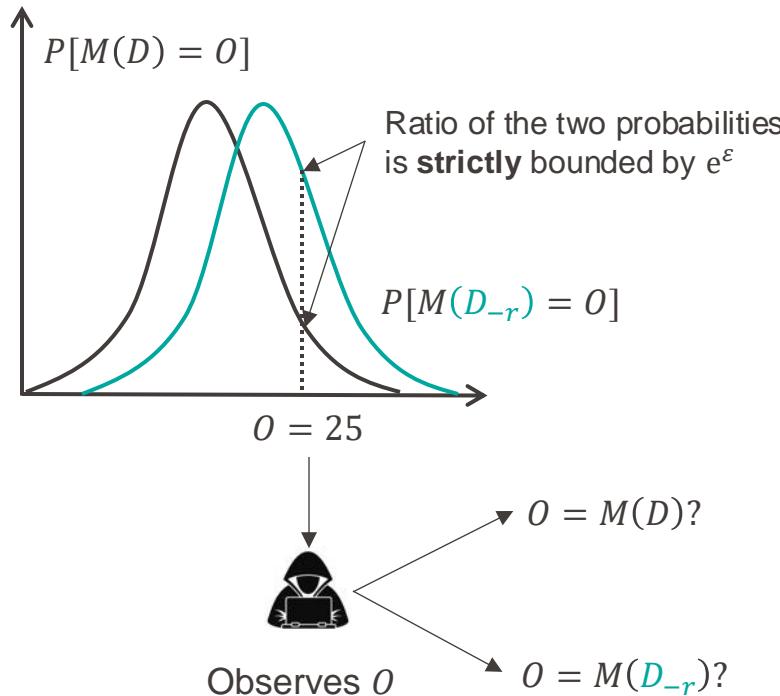
A mechanism M is ϵ -differentially private if for all neighbouring databases D and D_{-r} which differ in only one individual

$$\mathbb{P}[M(D) = O] \leq e^\epsilon \cdot \mathbb{P}[M(D_{-r}) = O]$$

... and this must be true for all possible outputs O

Understanding Differential Privacy

The Privacy Loss



Maximal knowledge gain of the attacker

For any neighbouring databases D, D_{-r} and any possible output O

$$\text{Privacy Loss} = \log \frac{P[M(D) = O]}{P[M(D_{-r}) = O]} < \epsilon$$

Understanding Differential Privacy

The Privacy Budget

$$\text{Privacy Loss} = \log \frac{P[M(D) = O]}{P[M(D_{-r}) = O]} < \varepsilon$$

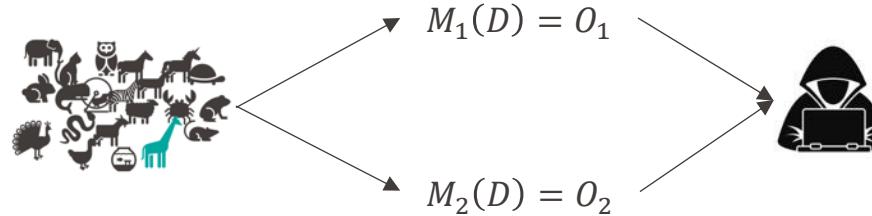
Privacy as a consumable resource The parameter ε measures leakage and can be treated as a “[privacy budget](#)” which is consumed as analyses are performed.

Understanding Differential Privacy

Sequential Composition

Theorem: Suppose that we have k algorithms M_1, M_2, \dots, M_k where each M_i satisfies ε_i -differential privacy, respectively. Consider the sequence of computations $\{O_1 = M_1(D), \dots, O_k = M_k(D, O_{k-1})\}$ run on dataset D and the auxiliary input O_i . Then the algorithm $M(D) = O_k$ is ε -differentially private with

$$\varepsilon = \varepsilon_1 + \varepsilon_2 + \dots + \varepsilon_k$$



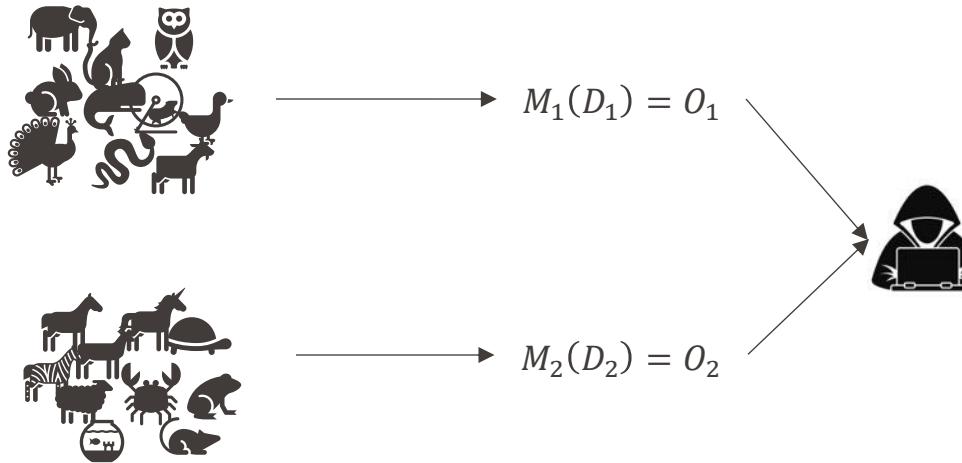
$$\log \frac{P[M_1(D) = O_1]}{P[M_1(D_{-r}) = O_1]} + \log \frac{P[M_2(D) = O_2]}{P[M_2(D_{-r}) = O_2]} < ?$$

Understanding Differential Privacy

Parallel Composition

Theorem: Suppose that we have k algorithms M_1, M_2, \dots, M_k where each M_i satisfies ε -differential privacy, respectively. Consider the sequence of computations $\{O_1 = M_1(D_1), \dots, O_k = M_k(D_k)\}$ where D_1, \dots, D_k are k disjoint subsets of the data D . Then the algorithm $M(D) = \{O_1, \dots, O_k\}$ is ε -differentially private with

$$\varepsilon = \varepsilon_1 = \dots = \varepsilon_k$$



Understanding Differential Privacy

Post-Processing

Differential Privacy Properties

Summary

- Formal notion of privacy that allows us to quantify the inherent privacy-utility trade-off
- Privacy loss random variable gives us a bound on the maximal advantage of the adversary
- Privacy budget ϵ allows to keep track of leakage
- Composition and post-processing theorems important in practice

Differential privacy is a notion of privacy **not** a tool → Next part: How to achieve differential privacy

**How to achieve
Differential
Privacy**

How to achieve Differential Privacy

Overview

▪ **Input perturbation**

- Add noise directly to the database (≠ perturbed dataset can be published)
 - + independent of the algorithm & easy to reproduce
 - determining the amount of required noise is difficult

▪ **Output perturbation**

- Add noise to the function (statistic) output
 - + easier to control privacy & better guarantees than input perturbation
 - results cannot be reproduced

▪ **Algorithm Perturbation**

- Inherently add noise to the algorithm
 - + algorithm can be optimized with the noise addition
 - difficult to generalize & depends on the inputs

How to achieve Differential Privacy

Input Perturbation

The Randomised Response algorithm:

Flip a coin (secretly)

If HEADS: Tell the truth (YES or NO)

If TAILS: Flip a second coin and respond:

If HEADS: Respond YES

If TAILS: Respond NO

Input data D

Privacy boundary

Scalar function $f(D)$

Survey respondents

"Have you ever cheated in an exam?"

Plausible deniability: A YES could have been due to the second coin flip.

Output space \mathbb{R}

Number of students who have cheated

How to achieve Differential Privacy

Input Perturbation

The Randomised Response algorithm:

Flip a coin (secretly)

If HEADS: Tell the truth (YES or NO)

If TAILS: Flip a second coin and respond:

If HEADS: Respond YES

If TAILS: Respond NO

The math

Assume the true answer is truth = YES

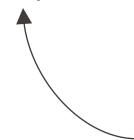
With probability $p = 50\%$ they will **truthfully** answer YES

With probability $p = 50\%$ they will answer **randomly**

With $p = 50\%$ the random answer is YES

With $p = 50\%$ the random answer is NO

$$\text{Privacy loss } \frac{\mathbb{P}[\text{answer}=YES \mid \text{truth}=YES]}{\mathbb{P}[\text{answer}=YES \mid \text{truth}=NO]} = \frac{0.75}{0.25} = 3 = e^\varepsilon \rightarrow \varepsilon \sim 1.1$$



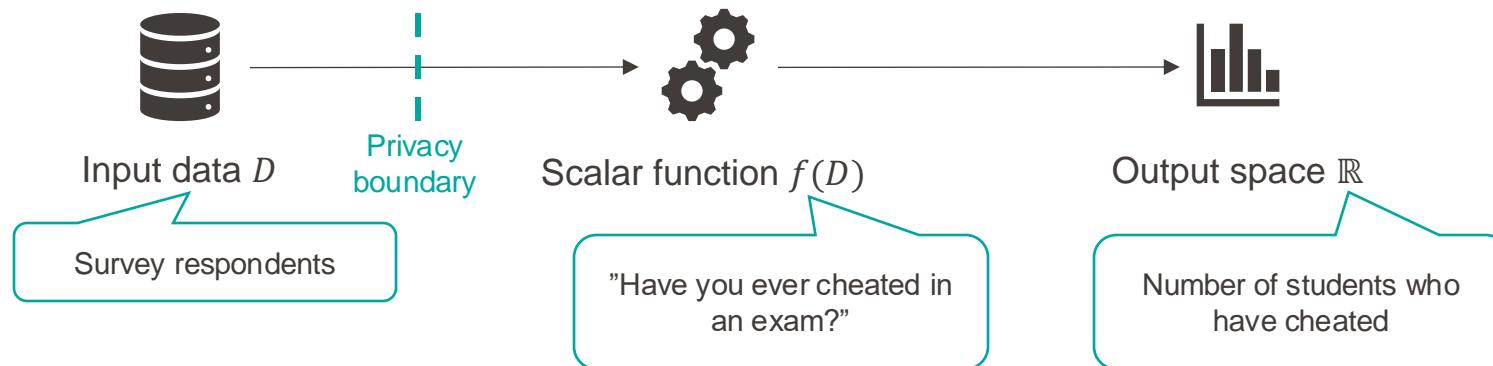
First coin TAILS
Second coin HEADS

How to achieve Differential Privacy

Input Perturbation

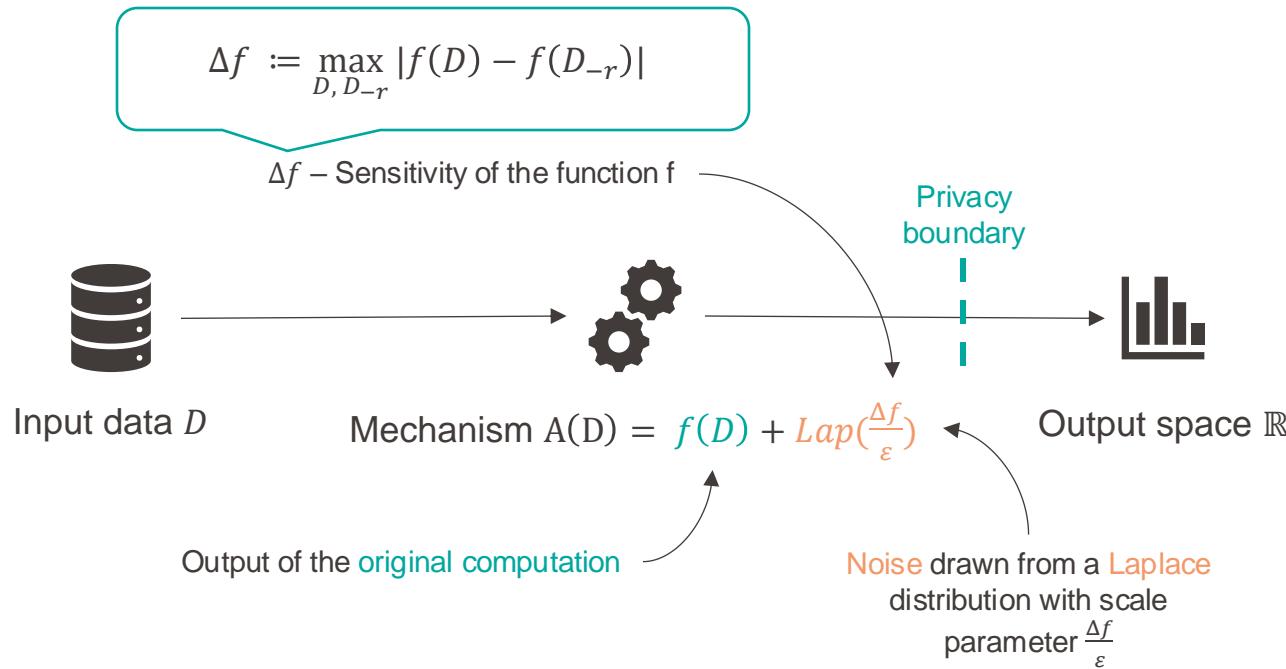
What about utility?

- Aggregate result is noisy
- However, if you have enough answers, with high probability, the noise will cancel itself out



How to achieve Differential Privacy

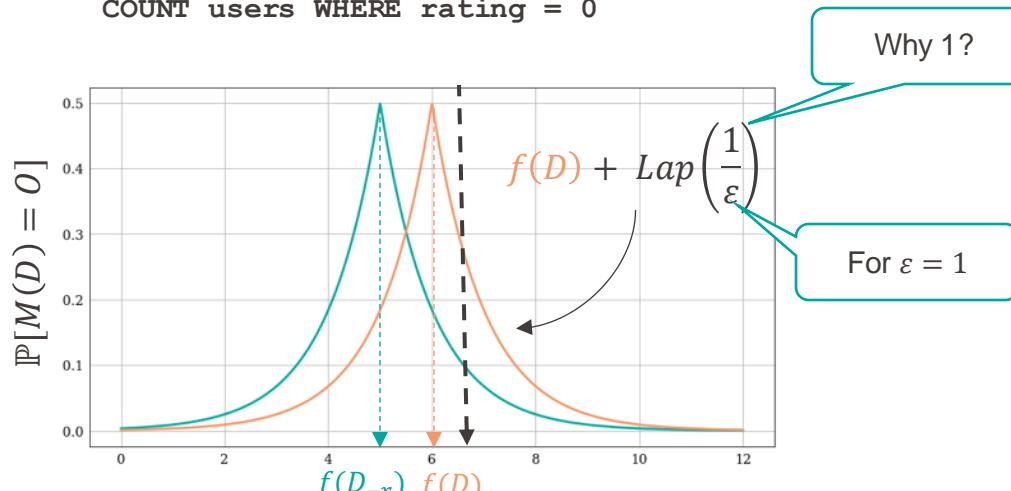
Output Perturbation



How to achieve Differential Privacy

Output Perturbation

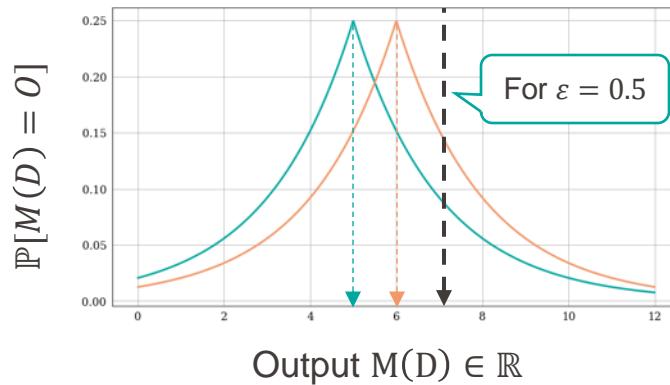
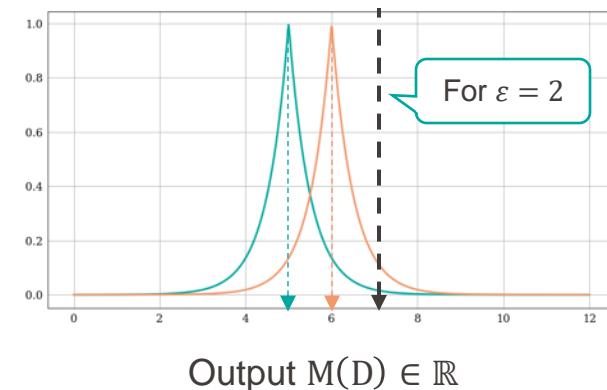
COUNT users WHERE rating = 0



Output $M(D) \in \mathbb{R}$

How to achieve Differential Privacy

Output Perturbation



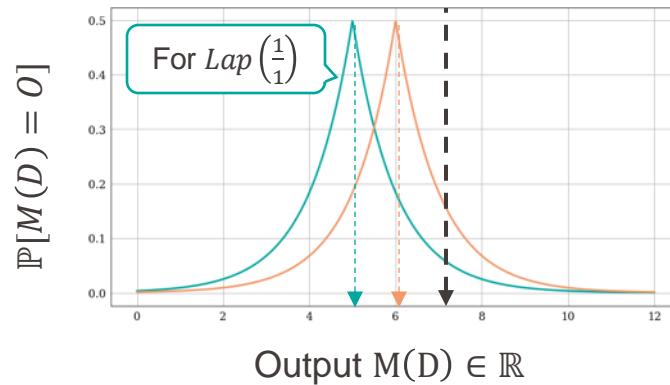
$\downarrow \varepsilon: \uparrow \text{privacy}$

$\uparrow \varepsilon: \downarrow \text{privacy}$

How to achieve Differential Privacy

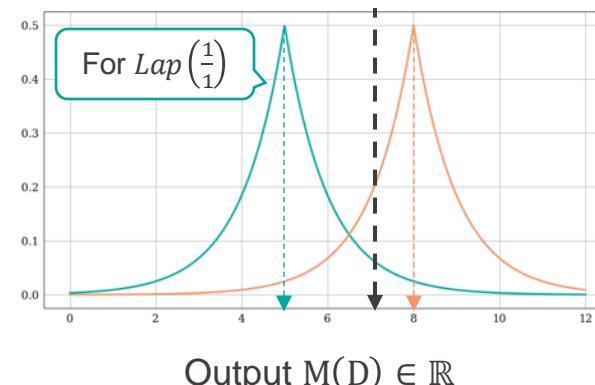
Output Perturbation

COUNT users WHERE rating = 0



$$\Delta f := \max_{D, D-r} |f(D) - f(D-r)| = 1$$

COUNT ratings WHERE rating = 0

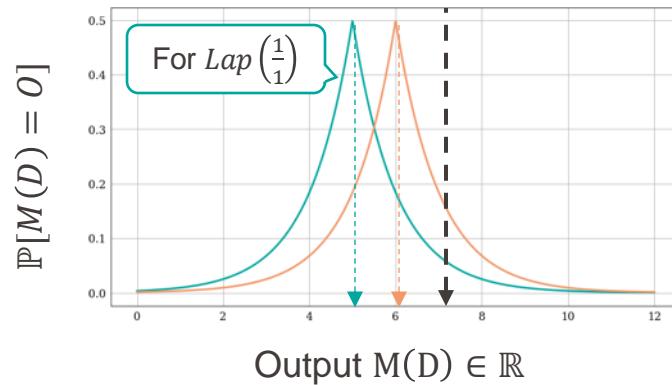


$$\Delta f := \max_{D, D-r} |f(D) - f(D-r)| = 3$$

How to achieve Differential Privacy

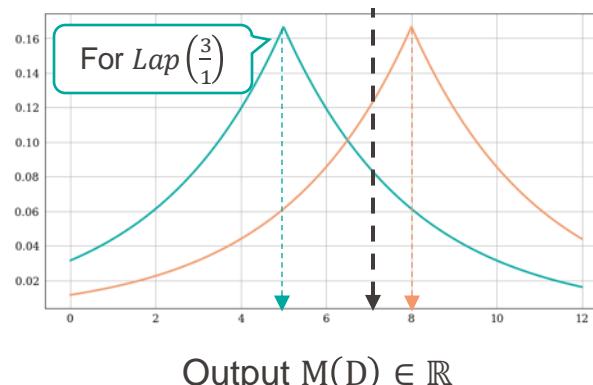
Output Perturbation

COUNT users WHERE rating = 0



$$\Delta f := \max_{D, D-r} |f(D) - f(D-r)| = 1$$

COUNT ratings WHERE rating = 0



$$\Delta f := \max_{D, D-r} |f(D) - f(D-r)| = 3$$

How to achieve Differential Privacy

Summary

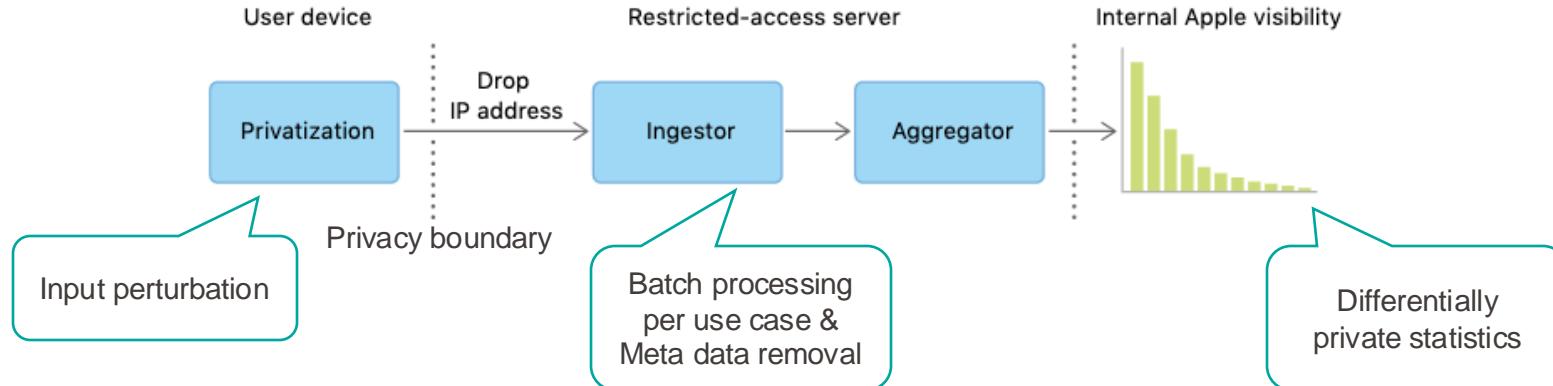
- Whether we use input or output perturbation shifts the privacy boundary
 - Input perturbation: The aggregator is **not** trusted
 - Output perturbation: Trusted aggregator.
- The randomised response algorithm is a simple way to perturb inputs that gives plausible deniability for sharing sensitive inputs and satisfies the differential privacy notion of privacy
- For output perturbation, the level of noise that is added depends on
 - Δf : The sensitivity of the computation (maximum influence a single individual can have on result)
 - ϵ : The privacy budget we want to spend on the computation

Differential Privacy in Practice

Differential Privacy in Practice

Input Perturbation

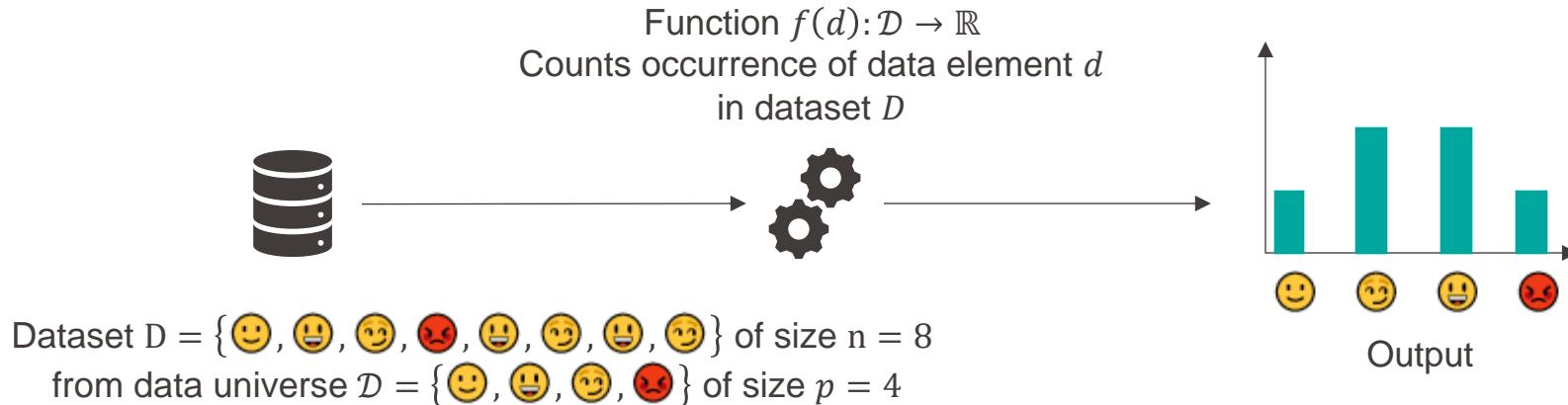
- Apple uses DP to crowdsource data from user devices (iOS, macOS) with privacy for various analytics
 - Discovering new words, popular emojis, web domains that consume high energy in Safari, etc.



- <https://machinelearning.apple.com/research/learning-with-privacy-at-scale>

Differential Privacy in Practice

Input Perturbation – Private Count Min Sketch

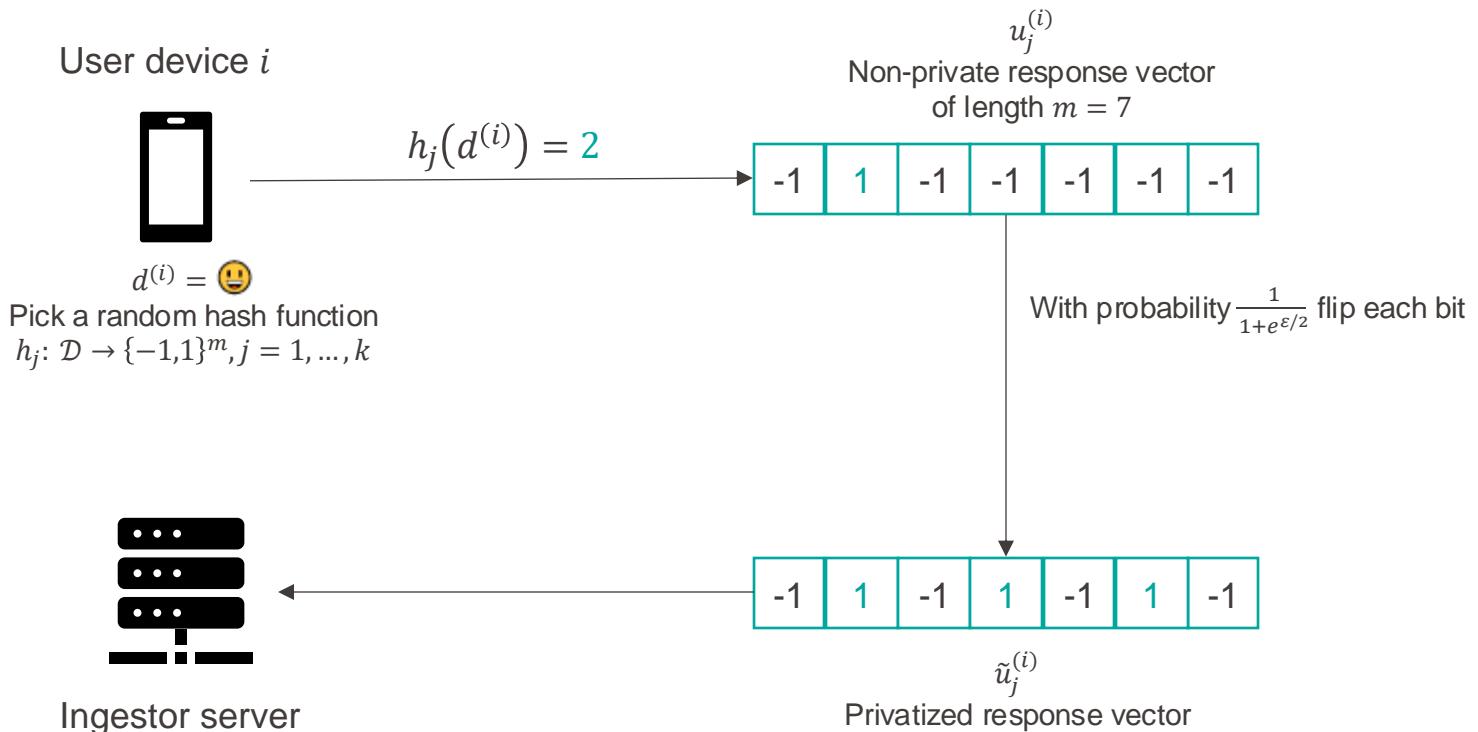


- <https://docs-assets.developer.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf>

Differential Privacy in Practice

Input Perturbation – Private Count Min Sketch

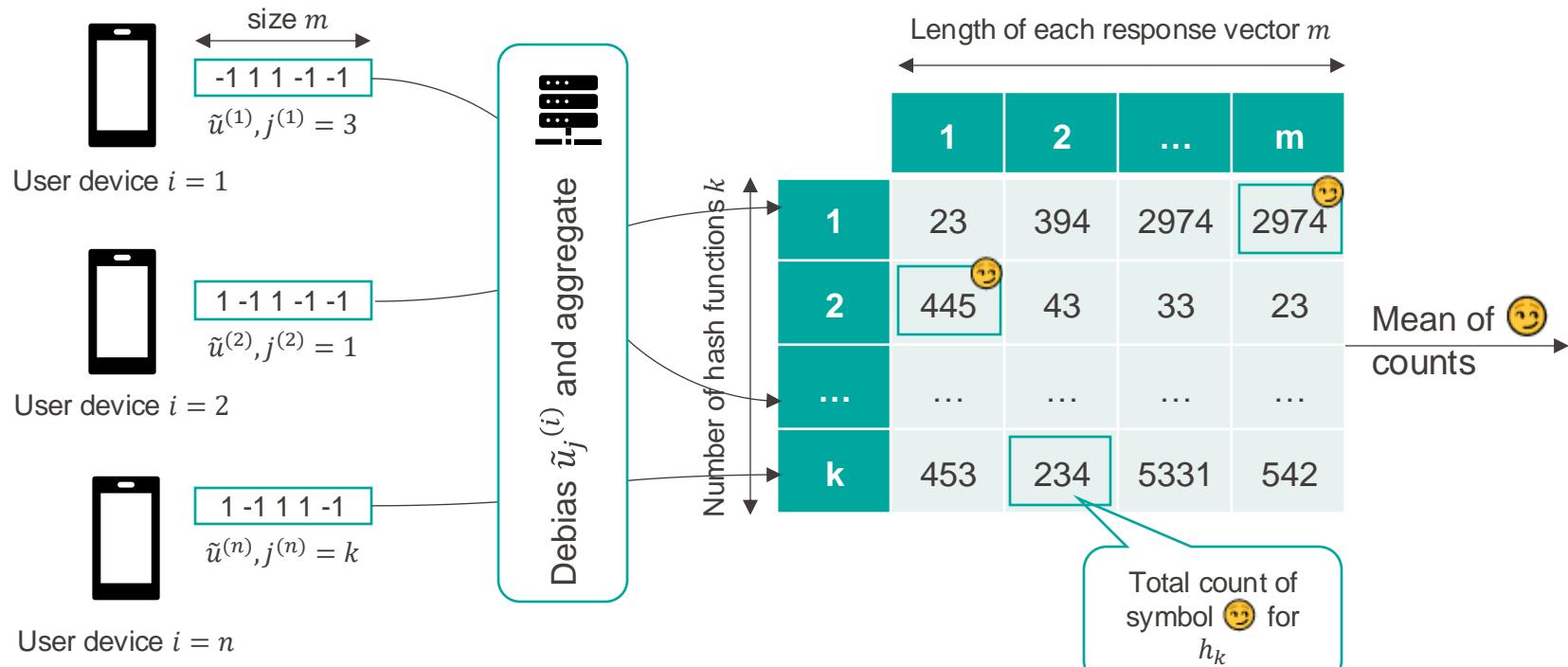
Client side algorithm M_{client}



Differential Privacy in Practice

Input Perturbation

Server side algorithm M_{server}



Differential Privacy in Practice

Input Perturbation

Privacy Analysis

We need to show that $M_{client}: \mathcal{D} \rightarrow \{-1, +1\}^m$ is ϵ -differentially private.

Input to the algorithm is an element from the data universe $d^{(i)} \in \mathcal{D}$

Output of the algorithm is the privatised vector $\tilde{u}_j^{(i)}$

$$\Rightarrow \ln \frac{\mathbb{P}[M_{client}(d) = \tilde{u}]}{\mathbb{P}[M_{client}(d') = \tilde{u}]} \leq \epsilon, \quad \forall \tilde{u} \in \{-1, 1\}^m$$

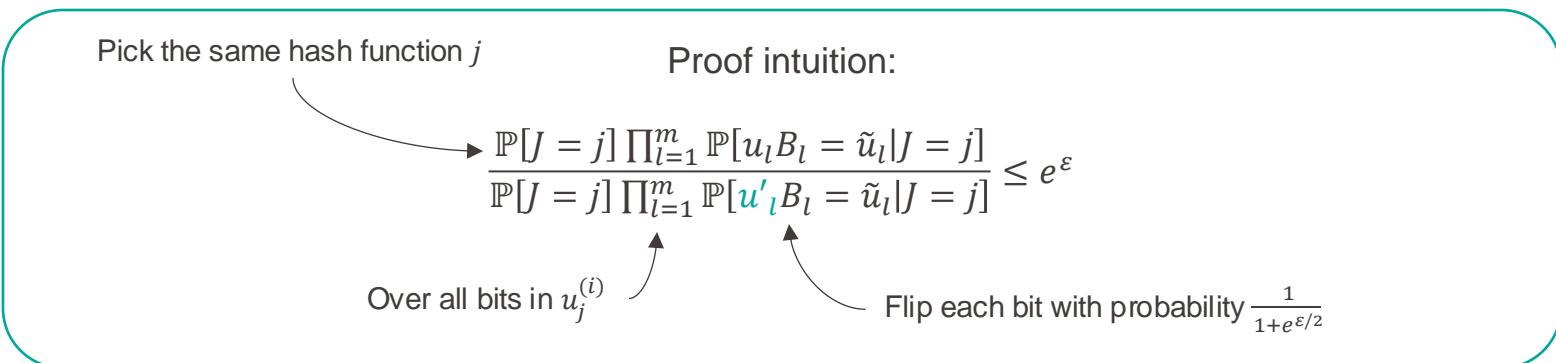
Proof intuition:

$$\frac{\mathbb{P}[J = j] \prod_{l=1}^m \mathbb{P}[u_l B_l = \tilde{u}_l | J = j]}{\mathbb{P}[J = j] \prod_{l=1}^m \mathbb{P}[\textcolor{teal}{u}'_l B_l = \tilde{u}_l | J = j]} \leq e^\epsilon$$

Differential Privacy in Practice

Input Perturbation

Privacy Analysis ctd.



$$\mathbf{u}, \mathbf{l} = h(d)$$

-1 **1** -1 -1 -1

Differ in at most two locations

-1 -1 **1** -1 -1

$$\mathbf{u}', \mathbf{l}' = h(d')$$

Case 1: $l = l'$

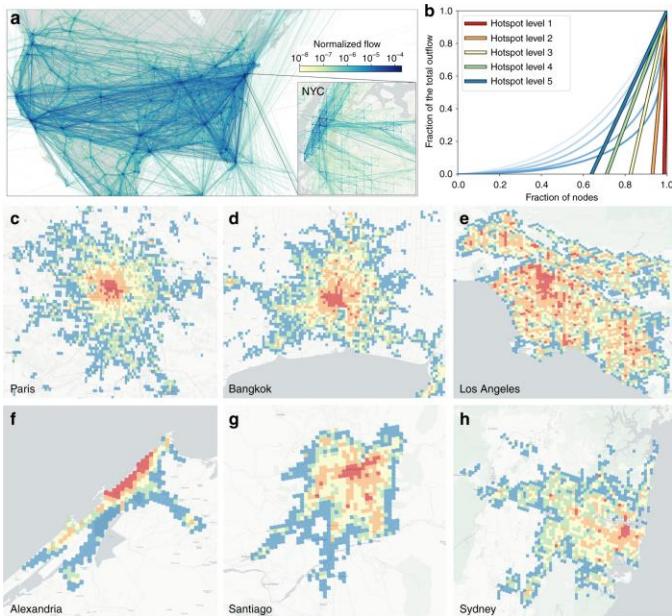
Then $\frac{\prod_{l=1}^m \mathbb{P}[u_l B_l = \tilde{u}_l | J = j]}{\prod_{l=1}^m \mathbb{P}[u'_l B_l = \tilde{u}_l | J = j]} = 1$

Case 2: $l \neq l'$

Consider probability that we flip bit l or l' with $\mathbb{P}[B_l = -1] = \frac{1}{1+e^{\varepsilon/2}}$
 to derive a bound on $\frac{\mathbb{P}[u_l B_l = \tilde{u}_l | J = j]}{\mathbb{P}[u'_l B_l = \tilde{u}_l | J = j]}$

Differential Privacy in Practice

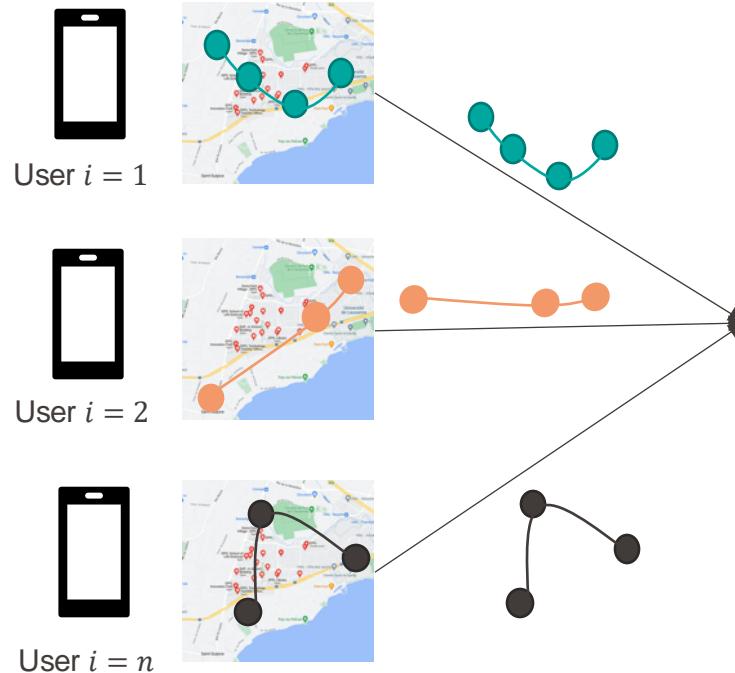
Output Perturbation



- In 2019, Google shared aggregated data from 300M Google Maps users with researchers to analyse human mobility patterns
 - Aggregate data from end-to-end trips taken by users
 - Privacy protected through differentially private output perturbation

Differential Privacy in Practice

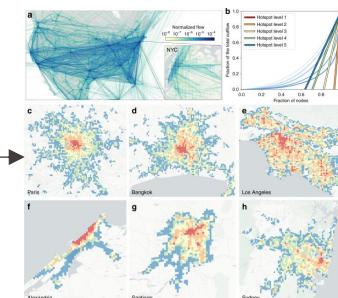
Output Perturbation



Privacy boundary

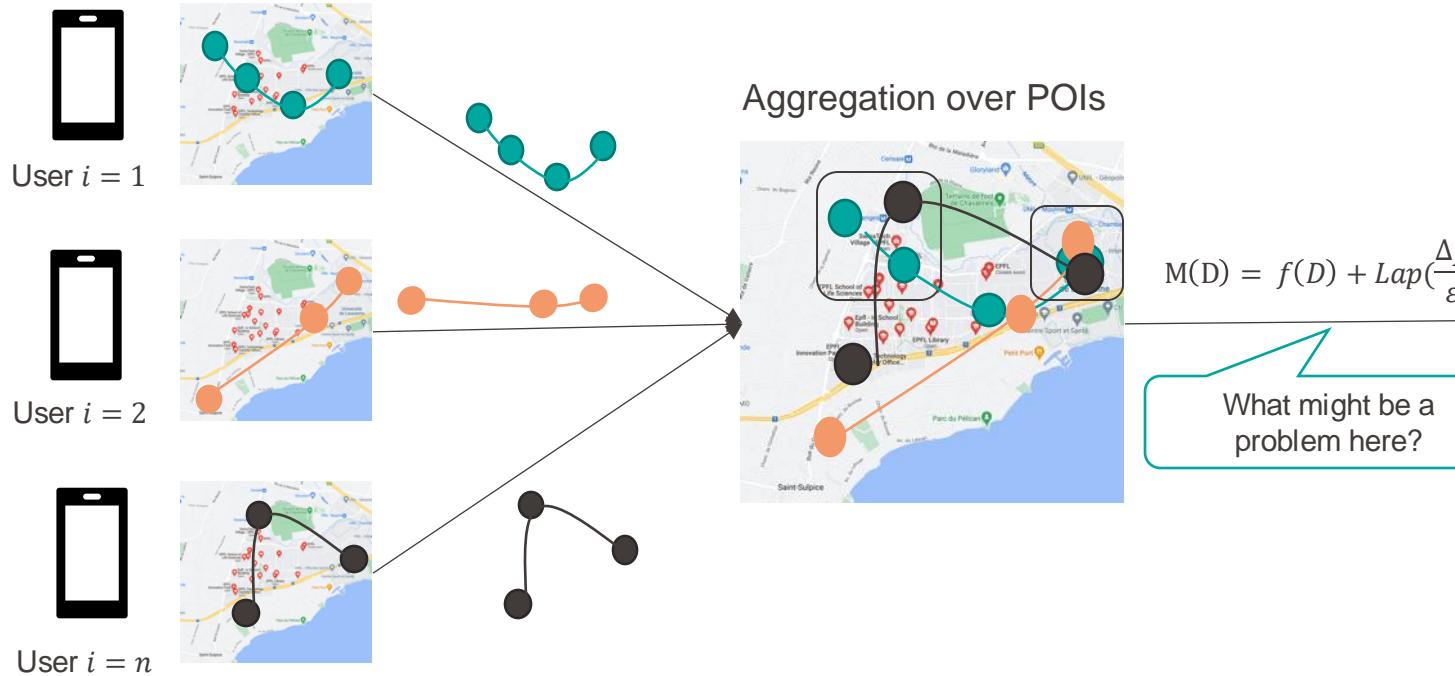
Aggregation & Noise addition

Publish



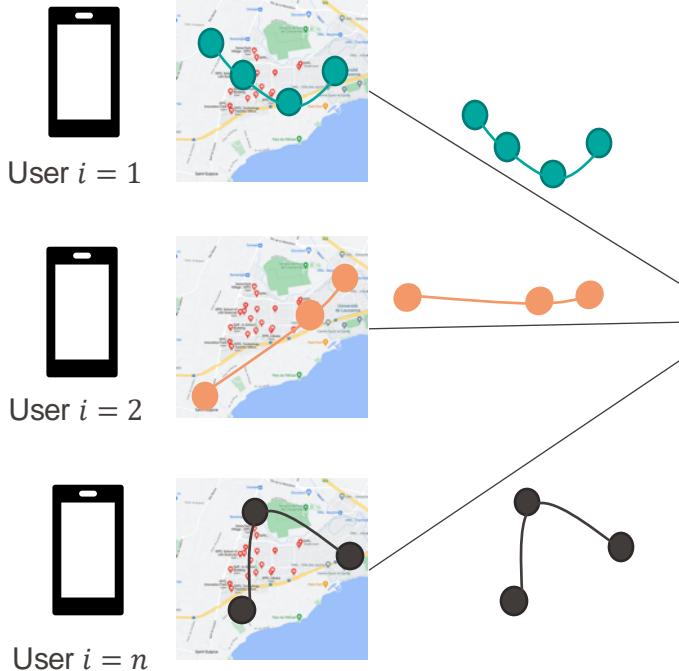
Differential Privacy in Practice

Output Perturbation



Differential Privacy in Practice

Output Perturbation



MATTERS ARISING

<https://doi.org/10.1038/s41467-021-27566-0>

OPEN

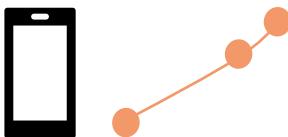
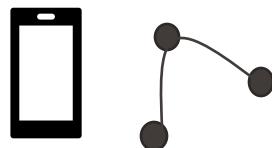
Check for updates

On the difficulty of achieving Differential Privacy in practice: user-level guarantees in aggregate location data

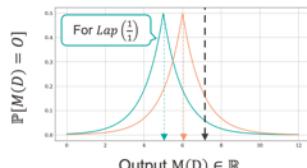
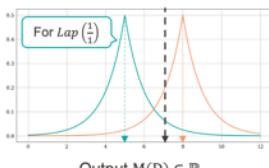
Florimond Houssiau^{1,2}, Luc Rocher^{1,3} & Yves-Alexandre de Montjoye¹

Differential Privacy Pitfalls

Units of Privacy & Unbounded Sensitivity



Remember?



1 $\Delta f := \max_{D, D-r} |f(D) - f(D-r)| = 1$

1 $\Delta f := \max_{D, D-r} |f(D) - f(D-r)| = 3$

What is Δf ?

$$M(D) = f(D) + \text{Lap}\left(\frac{\Delta f}{\epsilon}\right)$$

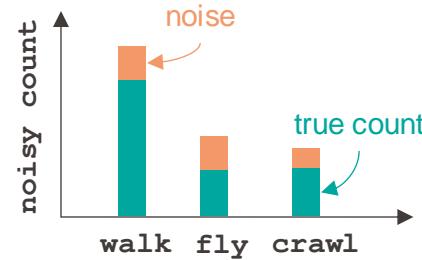
POI	M(D)
POI1	3094
POI2	3349
POI3	1782
...	...
POI	987

Differential Privacy Pitfalls

Unknown Categories

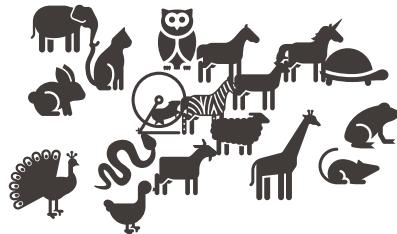


$$M(D) = f(D) + \text{Lap}\left(\frac{\Delta f}{\varepsilon_1}\right)$$

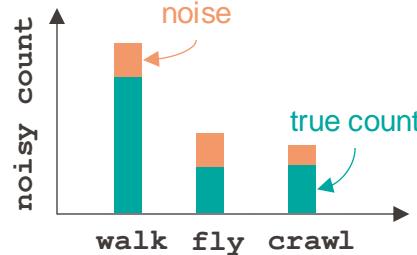


Differential Privacy Pitfalls

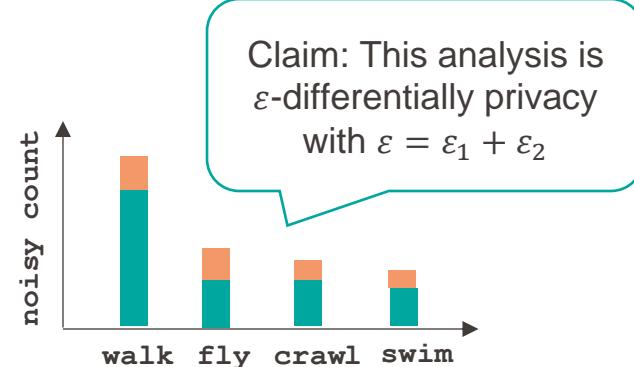
Unknown Categories



$$M(D) = f(D) + \text{Lap}\left(\frac{\Delta f}{\varepsilon_1}\right)$$



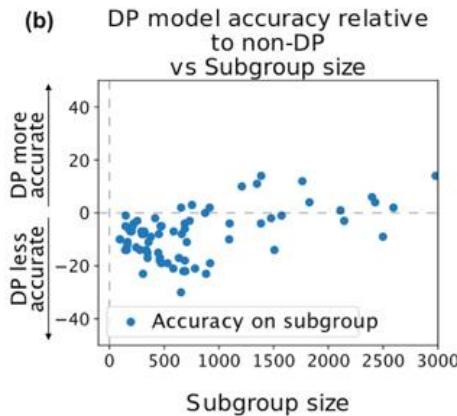
$$M(D) = f(D) + \text{Lap}\left(\frac{\Delta f}{\varepsilon_2}\right)$$



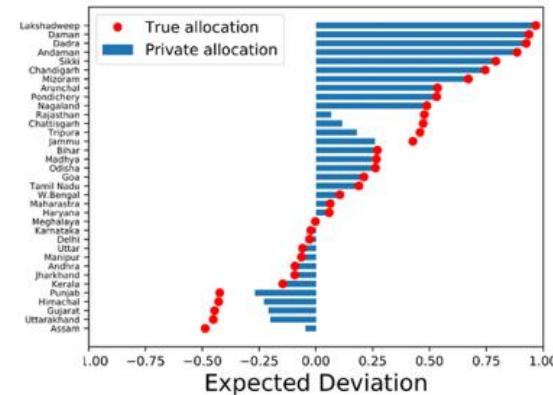
Claim: This analysis is ε -differentially privacy with $\varepsilon = \varepsilon_1 + \varepsilon_2$

Differential Privacy Pitfalls

Disparate Impact



Disparate impact of DP on a computer vision problem trained with DP-SGD, $\epsilon \approx 6$
"Differential Privacy Has Disparate Impact on Model Accuracy"
Eugene Bagdasaryan, Vitaly Shmatikov 2019



Disparate impact of hypothetical Indian parliament seat apportionment if Census data had central Laplace "Fair Decision Making Using Privacy-Protected Data"
David Pujol et al. 2020

Differential Privacy in Practice

Summary

- Examples of input and output perturbation in practice show that
 - Very large user base offsets the utility costs of noise addition
 - Differential privacy in practice is hard
- Many pitfalls to avoid
 - User- versus record-level privacy and unbounded sensitivity
 - Unknown categories
 - Disparate impact on subpopulations (DP techniques might not be the right fit for use case)

Takeaways

- Differential privacy is a **formal notion of privacy** that brings **many benefits** in comparison to previous heuristic privacy definitions
 - Protects even against worst-case adversaries
 - Allows to quantify inherent trade-offs between privacy and utility
- However, it is not a good fit for all use cases
 - Limited to computing a **well-defined statistical function** over the data that must be known at time of data publishing
 - **no secondary data use for research or other purposes**
 - By design, **hides** fine-grained statistical patterns such as information about **outliers**
 - **no anomaly detection**
- Many **pitfalls** to avoid when it comes to implementation
 - User- versus record-level privacy and unbounded sensitivity
 - Unknown categories
 - Disparate impact on subpopulations