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Introduction
Differential privacy

Course aim: learn toolbox for privacy engineering

Application Layer

Q
o
~ tool mechanism
to publish aggregates to evaluate privacy

with formal privacy
: guarantees



Goals
What should you learn today?

= Basic understanding of differential privacy and its key properties
« Composition
« Post-processing

= Understand the meaning of € and how to use it to measure privacy loss

= Understand basic methods to achieve differential privacy

= Understand practical issues when using differential privacy



=PFL " Privacy-preserving microdata sharing
Recap

Sensitive data about people Research, business insights, innovation,...
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De-identification
(aka Anonymisation)

|

Mask or Remove Personally Identifiable Information (PII):
name, SSN, phone number, address, email, twitter handle,...
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Recap
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=PFL Privacy-preserving microdata sharing
Recap

[A Auxiliary data ]
+

[A High-dimensionality ]
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=PFL  The privacy-utility trade-off
Recap

Protects even against strong privacy
adversaries that might have any
auxiliary data but does not retain data

utility
The holy-grail of privacy-
preserving data publishing

Weak assumptions about privacy
adversaries preserves data utility
but does not protect privacy

Resist strong privacy adversaries

Is useful for research & innovation



=PFL  The privacy-utility trade-off
Recap
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The holy-grail of privacy-
preserving data publishing
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Resist strong privacy adversaries

Is useful for research & innovation



=P"L  Aggregate Data Publishing

[ Change of paradigm: Query access }

Privacy Adversary
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=PFL  Aggregate Data Publishing
Differencing Attacks

[ Have we solved the privacy problem if we just switch to query access? }

/ Name Commune COVID+ \

Alice 1025 Yes Response Q2: 2
Baptiste 1026 Yes ‘/ \ Response Q]_ 3 ‘
Charles 1028 No Privacy-preserving > ‘.‘
David 1023 No query mechanism | n
Eric 1025 No A > Q1: “How many people in
the database have tested
Francois 1015 Yes positive?”

Geraldine 1028 No
J Q2: “How many people in the
database, not living 1015,

have tested positive?”




=PFL  Aggregate Data Publishing
Differencing Attacks

[ Have we solved the privacy problem if we just switch to query access? }

11

[ A Differencing Attacks

/ Name Commune COVID+ \

Alice
Baptiste
Charles

David

Eric

Francois

1025
1026
1028
1023
1025
1015
1028

Yes
Yes
No
No
No
Yes

No

\QGeraldine

\ 4

a

.

Privacy-preserving
query mechanism

\

| have no
background
information

55:()()

Response Q2: 2
Response Q1: 3

»
L

®
[

A

4

Q1: “How many people in
the database have tested
positive?”

Q2: “How many people in the
database, not living 1015,
have tested positive?”



=PFL  Aggregate Data Publishing
Differencing Attacks

[ Have we solved the privacy problem if we just switch to query access? }

12

[ A Differencing Attacks

/ Name Commune COVID+ \

Alice
Baptiste
Charles

David

Eric

Francois

1025
1026
1028
1023
1025
1015
1028

Yes
Yes
No
No
No
Yes

No

\QGeraldine

\ 4

a

.

Privacy-preserving
query mechanism

\

“Francois is the
only one who
lives in 1015.”

Response Q2: 2
Response Q1: 3

»
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®
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Q1: “How many people in
the database have tested
positive?”

Q2: “How many people in the
database, not living 1015,
have tested positive?”



=PFL  Aggregate Data Publishing
Differencing Attacks

[ Have we solved the privacy problem if we just switch to query access? ]

“Francois is the only

% i one who lives in 1015.”

/ Name Commune COVID+

Alice 1025 Yes Response Q2: 2
Baptiste 1026 Yes ! e e Response Q1: 3
Charles 1028 No R g

David 1023 No

Eric 1025 No “How many people in

database have tested
Francois 1015 Yes positive?”

How many people in the
B abase, not living 1015,
sMave tested positive?”

\@Geraldine 1028 No




=PFL  Aggregate Data Publishing
Query Auditing

Have we solved the privacy problem if we just switch to query access
with query auditing?

/ Name

Alice
Baptiste
Charles

David

Eric

Francois

Index

1

N o o b~ WD

Secret \

10
13

p

1
50

8
23

\QGeraldine

—

A\

N OK to
publish?

Yes

N

Response Q2: DENIED!
Response Q1: 50

v

4

»
«

Ql:max(1,2,3,4,5,6,7)

Q2:max(1,2,3,5,6,7)

@
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=PFL  Aggregate Data Publishing
Query Auditing

Have we solved the privacy problem if we just switch to query access
with query auditing?

/ Name

Alice
Baptiste
Charles

David

Eric

Francois

Index

1

N o o b~ WD

Secret \

10
13

A Denials leak info

a

1
50

8
23

@Geraldine

—

A\

N OK to
publish?

Yes

N

I

Response Q2: DENIED!
Response Q1: 50

v

4

»
«

Ql:max(1,2,3,4,5,6,7)

Q2:max(1,2,3,5,6,7)

@
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=PFL  Aggregate Data Publishing
Query Auditing

Have we solved the privacy problem if we just switch to query access
with query auditing?

on?
/ Name Index Secret

Alice 1 10 Response Q2: DENIED!
Baptiste 2 13 Response Q1: 50 ‘
Charles 3 1 o

paid 4 5 [,

Eric 5 8 QOl:max(1,2,3,4,5,6,7)
Francois 6 23 Q2:max(1,2,3,5,6,7)

7 36

\QGeraldine
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Query Auditing

[ Have we solved the privacy problem if we just switch to query access J

with simulatable query auditing?

@ D

Simulatable query auditing

\4

Response R«

Queries Q1, Q2 , ..., Qn

Is there an
answer to Qn+
that would leak?



=PFL  Aggregate Data Publishing
Query Auditing

= Audits are limited to a fixed privacy definition

* Individual (record) vs. group (record) privacy
* Rely on heuristics

= Algorithmic limitations

« Secure deniability implies using algorithms computationally prohibitive
» Feasible methods focused on simple queries

= Utility loss not quantifiable

« Literature uses percentage of denials but this may not be representative
« No good way to quantify the privacy-utility trade-off

18
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Differential Privacy
Motivation

)

[ A Previous Techniques )

Heuristic privacy definition
fixed to one adversary

[ Repeated failures ]

[ Utility loss not quantifiable ]

{ @ Differential Privacy]

[ Formal privacy guarantee ]

[ Set the right social incentives ]

[ Quantify inherent trade-offs ]
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Differential Privacy
Motivation

Noise addition

p
bﬁ iy, -

23

Computation Data/Output the same*

Differentially Private [ Looks basically

|

& iy, -

o

*no matter whom you removed from your database
and what database you had in the first place

1




=L Differential Privacy
Motivation

Computation Data/Output

— COUNT * WHERE > 2m —»

2 «——

&

L

24

Difference reveals
secret

|




=L Differential Privacy
Motivation

f Noise addition
3

I
ﬁ——»COUNT*WHERE>2m—> 4 <«
?
- &

Differentially I_Drivate Data/Output Looks basically
Computation the same

— COUNT * WHERE > 2m ——»> 4 <«

\

Noise addition
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=PFL Differential Privacy '
Formal Definition T

& W

A mechanism M is e-differentially private if for all neighbouring
databases D and D_,. which differ in only one individual

o

P[M(D) = 0] < e - P[M(D_,) = 0]

... and this must be true for all possible outputs O



Understanding Differential Privacy
The Privacy Loss

\
P[M(D) = 0]
Maximal knowledge gain of the attacker
Ratio of the two probabilities
is strictly bounded by e® For any neighbouring databases D, D_,. and
any possible output O

. P[M(D) = 0]
P[M(D_,) = 0] Privacy Loss = lOgP[M(D_T) — 0] <e

0 =25
l 0 = M(D)?

Observes 0 0 =M(D_,)?
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Understanding Differential Privacy
The Privacy Budget

| P[M(D) = 0]
Privacy Loss = Ing[M(D_ ) = 0]

92

Privacy as a consumable resource The parameter € measures leakage and can be
treated as a “privacy budget” which is consumed as analyses are performed.




=PFL  Understanding Differential Privacy
Sequential Composition

Theorem: Suppose that we have k algorithms M;, M,, ..., M;, where each M; satisfies
g; -differential privacy, respectively. Consider the sequence of computations
{0, = My(D), ..., 0y = M} (D, Ox_1)} run on dataset b and the auxiliary input 0;. Then
the algorithm M(D) = 0y is e-differentially private with

E=& T+ &+t &

PIMy(D) = 0i] PIMy(D) = 0]
SPM.(D_) = 0] * "8 P[M,(D_,) = 0,

30



=PFL  Understanding Differential Privacy
Parallel Composition

Theorem: Suppose that we have k algorithms M;, M,, ..., M;, where each M; satisfies
¢ -differential privacy, respectively. Consider the sequence of computations
{0, = M,(D,), ..., 0, = My(Dy, )} where Dy, ..., D, are k disjoint subsets of the data D.
Then the algorithm M(D) = {04, ..., 04} is e-differentially private with
E=€& ==&

Ml(Dl) - 01

v

I

v

MZ (Dz) = 02

31



=PFL  Understanding Differential Privacy )
Post-Processing

still e-differentially private
i

M oe owoa b

e-differentially private

computation What about results
derived from the output?
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Differential Privacy Properties ’
Summary

= Formal notion of privacy that allows us to quantify the inherent privacy-
utility trade-off

= Privacy loss random variable gives us a bound on the maximal
advantage of the adversary

= Privacy budget € allows to keep track of leakage
= Composition and post-processing theorems important in practice

Differential privacy is a notion of privacy not a tool — Next part: How to achieve differential privacy
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| Howtoachleve
“ " Differential
Privacy
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How to achieve Differential Privacy
Overview

= [nput perturbation

» Add noise directly to the database ( # perturbed dataset can be published)
+ independent of the algorithm & easy to reproduce
- determining the amount of required noise is difficult

= Qutput perturbation

« Add noise to the function (statistic) output
+ easier to control privacy & better guarantees than input perturbation
- results cannot be reproduced

= Algorithm Perturbation

* Inherently add noise to the algorithm
+ algorithm can be optimized with the noise addition
- difficult to generalize & depends on the inputs

35
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=P How to achieve Differential Privacy
Input Perturbation

//;£e Randomised Response algorithm: 4\\\
Flip a coin (secretly)

If HEADS: Tell the truth (YES or NO)
If TAILS: Flip a second coin and

d:
respon Plausibe deniability: A YES

If HEADS: Respond YES could have been due to the
If TAILS: Respond NO J second coin flip.

e~ I

— \ . a > III

— : a |

— [

Privacy .
Input data D boundary ~ Scalar function f (D) Output space R

Number of students who

Survey respondents }
have cheated

"Have you ever cheated in
an exam?”
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How to achieve Differential Privacy ’

Input Perturbation

//;;e Randomised Response algorithm:

Flip a coin (secretly)

~

If HEADS: Tell the truth (YES or NO)

If TAILS: Flip a second coin and
respond:

If HEADS: Respond YES

\ If TAILS: Respond NO

//;£e math

Assume the true answer is truth = YES
With probability p = 50% they will truthfully answer YES

With probability p = 50% they will answer randomly

J

Planswer=YES | truth=YES] _ 0.75

-

~

With p = 50% the random answer is YES
With p = 50% the random answeris NO J

Privacy loss

Planswer=YES | truth=NO] ~0.25

=3=e® 5e~1.1

First coin TAILS
Second coin HEADS



=P How to achieve Differential Privacy "
Input Perturbation

What about utility?
Aggregate result is noisy
However, if you have enough answers, with high probability, the noise will cancel

itself out
- I
— = > ao - i,
— |
Privacy )
Input data D boundary ~ Scalar function f (D) Output space R

an exam?”’ have cheated

Survey respondents
[_%y P } [ "Have you ever cheated in

[ Number of students who




=P How to achieve Differential Privacy "
Output Perturbation

[ Af = Jnax |f(D) — f(D_,)| }

Af — Sensitivity of the function f _
Privacy
boundary
O '
> ] >
" O T ~ il

Input data D Mechanism A(D) = f(D) + \ Output space R

Output of the original computation /

(((

drawn from a

distribution with scale

A
parameter Tf
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How to achieve Differential Privacy
Output Perturbation

S & —h—4&

COUNT users WHERE rating = 0
L Why 1?

\,
1 Fore =1 ]

= 0]

P[M(D)

f_) f

Output M(D) € R



=P How to achieve Differential Privacy
Output Perturbation

S & —h—4&

COUNT users WHERE rating = 0

25 | 1 i ]

— VAN | | [l |

| ; J ! ! I !
~ N A/
Q / '\ ! ’ I
— 0.10 ; : E "
E‘ 0.05 i I | i 1
B g l ; |

o 4 Y 6 + 8 10 7 - " + 6 ]

Output M(D) € R Output M(D) € R

[ | &: T privacy } [ T e:l privacy
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How to achieve Differential Privacy "
Output Perturbation

> ~___
= £ | — o |
- 5 - 5 - e
COUNT users WHERE rating = 0 COUNT ratings WHERE rating = 0
i ]
— | ! |
@) | [
Il ! I .
~ i |
Q E 1 .
el : |
= i I .
= z |
1 Y 6 + B 10 ;'2: 4 + 6 + B

Output M(D) € R Output M(D) € R

[Af = max|f(D) — f(D_,)| =1 ] [Af = max|f(D) — f(D_,)| =3 J
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Output Perturbation

COUNT users WHERE rating = 0

. i ]
— ; I |
) ; [
Il ! I .
~ i |
Q E 1 .
el : |
= N |
By i !
I \ 4 ) 4 L T |

Output M(D) € R

[Af = pg}lf(D)—f(D_r)I=1 }

How to achieve Differential Privacy "

.

COUNT ratings WHERE rating = 0

w

10 12

e

Output M(D) € R

[ Af = max|f(D) - f(D_)| =3 J
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How to achieve Differential Privacy
Summary

= Whether we use input or output perturbation shifts the privacy boundary
* Input perturbation: The aggregator is not trusted
« Output perturbation: Trusted aggregator.

= The randomised response algorithm is a simple way to perturb inputs
that gives plausible deniability for sharing sensitive inputs and satisfies
the differential privacy notion of privacy

= For output perturbation, the level of noise that is added depends on

* Af: The sensitivity of the computation (maximum influence a single individual
can have on result)

* &: The privacy budget we want to spend on the computation

4
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=PFL  Differential Privacy in Practice "
Input Perturbation

= Apple uses DP to crowdsource data from user devices (I0S, macOS)
with privacy for various analytics

 Discovering new words, popular emojis, web domains that consume high
energy in Safari, etc.

User device Restricted-access server Internal Apple visibility

Drop

. |IP address

Privatization Ingestor ——>  Aggregator —)

Privacy boundary

Input perturbation Batch processing

Differentially
private statistics

per use case &
Meta data removal

“ https://machinelearning.apple.com/research/learning-with-privacy-at-scale



=PFL  Differential Privacy in Practice "
Input Perturbation - Private Count Min Sketch

Function f(d):D -» R
Counts occurrence of data element d
in dataset D

A

= & all
— a

© @ ®)
Dataset D = {©,©,® @ ©, @ ©, @} of sizen =8 Output

from data universe D = {@®, ©®, ®, @} of size p = 4

= https://docs-assets.developer.apple.com/mi-research/papers/learning-with-privacy-at-scale. pdf
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Input Perturbation - Private Count Min Sketch

Client side algorithm M jion:

0
Yy

User device i Non-private response vector
. of lengthm =7
D () =2
»-111]-1|-1]-1]1-1](-1
dO = @ 1
Pick a random hash function With probability =77, flip each bit

hi: D - {(=1,1}"j =1,..,k

A 4

$< 111 )-1)11(-111(-1
I ﬁgi)

j
- Ingestor server Privatized response vector
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Input Perturbation

Server side algorithm Mg ,per

S'Ze m Len gth of each response vector m
l 11-1-1

User device i = 1
394 2974 | 2974

i

ns k

X

4457 43 33 23 Meanof @

i@, j@ =
u =1 counts

D 11111—/

User device i = 2

Dm—/

;ﬂber o/ash functio

453 | 234 | 5331 542

Nu

am ](n)
Total count of

. symbol @ for
User device i = n Ry

[Debias ﬂj(i) and aggregate




=PFL  Differential Privacy in Practice
Input Perturbation

Privacy Analysis

|

We need to show that M_j;cn:: D — {—1, +1}™ is e-differentially private.

Input to the algorithm is an element from the data universe d® € D

Output of the algorithm is the privatised vector i

(D)

-

n ~
IID[Iwclient(d,) = u]

IP)[1\4client(d) = ii]

<¢g vii e {—1,1}™

Proof intuition:

PU = I PlwB =@l =j1 _ .

P[] = jITIZ, Pl By = wl) = j1 —




=PFL  Differential Privacy in Practice "
Input Perturbation

Privacy Analysis ctd.

/ Pick the same hash function j Proof intuition: \

\» P[] = jI 1%, Plw,B, = 1] = j]

Pl = j1 111, P B, = @l] = J1

over all bits in u® /A \ Flip each bit with probability — )

&

N

u,l = h(d) Casel: l=1

i B =] =
11-1-1-1 Then LEcBlwB =@l =j _ 4
| | N 1z, el By = Tl) =

, Differ in at most two locations ——»

|-1-11-1-1 | Case2: =l

Consider probability that we flip bit 1 or I with P[B;, = —1] =
Pluy B, = 1| = J

Plu',B; = 1|] = |

1
1+e#/2

w, ' = h(d)

to derive a bound on



=PFL  Differential Privacy in Practice
Output Perturbation

= |n 2019, Google shared aggregated
data from 300M Google Maps users
with researchers to analyse human
mobility patterns

» Aggregate data from end-to-end trips
taken by users

* Privacy protected through differentially
private output perturbation




=PFL  Differential Privacy in Practice

Output Perturbation

Useri=n

Privacy boundary

[oee
o

Aggregation
&
Noise addition

Publish

St

sssss

53
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Differential Privacy in Practice

Output Perturbation

Useri=n

Aggregation over POls

Sant Suipree

M(D) = f(D) + Lap(A?f)

B

What might be a
problem here?

}'

54

POl M(D)

POI1

3094

POI2

3349

POI3

1782

POI

987




=PFL  Differential Privacy in Practice )
Output Perturbation

-

nature
COMMUNICATIONS

MATTERS ARISING ) Ghock forupdiates

OPEN

On the difficulty of achieving Differential Privacy in
practice: user-level guarantees in aggregate
location data

Florimond Houssiau'?, Luc Rocher® 3 & Yves-Alexandre de Montjoye® '™

Useri=n



=PFL  Differential Privacy Pitfalls -
Units of Privacy & Unbounded Sensitivity

D ‘\‘\‘/. Remember? [ Whatis A
POl M(D)

[ ortap(t 1 : [ Forzap(® \;I-. :
(@A (e }) POI1 3094

! [\ A
D R \ : M(D) = f(D) + Lap(?f) PO 3349

SRS >
|

[M(D) = 0]

Output M(D) e R . Output M(D) € R . PO|3 1782

o N .
{ﬂf = paxIf (D)~ (D)l = 1 ‘ {ﬂf = pax|f (D)~ (D_)| = 3 ‘

POI 987




=PFL  Differential Privacy Pitfalls
Unknown Categories

noisy count

[

true count

11

walk fly crawl

57
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Differential Privacy Pitfalls
Unknown Categories

o

Mb M(D) = a T»

f(D) + Lap(g—l)

%aﬁ%

M(D) = F(D) + Lap(i—f)

noisy count

noisy count

[

true count

11

walk fly crawl

Claim: This analysis is
e-differentially privacy
with e = & + &,

I I l . >
»

walk fly crawl swim
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Differential Privacy Pitfalls
Disparate Impact

(b) DP model accuracy relative
to non-DP
vs Subgroup size

vo| 40
¥
Eé 204
o L
Dg o’ .. *
011 o6 °5@ o o*® h——
wd .{ @ .
SS kﬁ o E
= 5| =20 o Ve,
av
oY .-
-401 e Accuracy on subgroup

0 500 1000 1500 2000 2500 3000

Subgroup size

Disparate impact of DP on a computer vision problem trained with
DP-SGD, epsilon =6

"Differential Privacy Has Disparate Impact on Model Accuracy”

Eugene Bagdasaryan, Vitaly Shmatikov 2019

. 7 | Bl ¥
sndsman 4 EEEE Private allocation ————————————
— e
—_——
]
=
==
e

.00 -0.75 -050 -0.25 0.00 0.25 0.50 0.'75 1.00
Expected Deviation

Disparate impact of hypothetical Indian parliament seat
apportionment if Census data had central Laplace "Fair Decision
Making Using Privacy-Protected Data"

David Pujol et al. 2020



=PFL  Differential Privacy in Practice "
Summary

= Examples of input and output perturbation in practice show that
* Very large user base offsets the utility costs of noise addition
« Differential privacy in practice is hard

= Many pitfalls to avoid
» User- versus record-level privacy and unbounded sensitivty
* Unknown categories

 Disparate impact on subpopulations (DP techniques might not be the right fit
for use case)
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Takeaways "

= Differential privacy is a formal notion of privacy that brings many benefits
iIn comparison to previous heuristic privacy definitions

* Protects even against worst-case adversaries
 Allows to quantify inherent trade-offs between privacy and utility

= However, it is not a good fit for all use cases

 Limited to computing a well-defined statistical function over the data that must
be known at time of data publishing

— no secondary data use for research or other purposes

. Byt?_esign, hides fine-grained statistical patterns such as information about
outliers

— no anomaly detection

= Many pitfalls to avoid when it comes to implementation
» User- versus record-level privacy and unbounded sensitivty
* Unknown categories
» Disparate impact on subpopulations
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